题目内容

14.荆岗中学决定在本校学生中,开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校m名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.

(1)m=100,n=15;
(2)请补全图中的条形图;
(3)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人喜爱踢足球;
(4)在抽查的m名学生中,喜爱打乒乓球的有10名同学(其中有4名女生,包括小红、小梅),现将喜爱打乒乓球的同学平均分成两组进行训练,且女生每组分两人,求小红、小梅能分在同一组的概率.

分析 (1)根据喜爱乒乓球的有10人,占10%可以求得m的值,从而可以求得n的值;
(2)根据题意和m的值可以求得喜爱篮球的人数,从而可以将条形统计图补充完整;
(3)根据统计图中的数据可以估算出全校1800名学生中,大约有多少人喜爱踢足球;
(4)根据题意可以写出所有的可能性,注意(C,D)和(D,C)在一起都是暗含着(A,B)在一起.

解答 解:(1)由题意可得,
m=10÷10%=100,n%=15÷100=15%,
故答案为:100,15;
(2)喜爱篮球的有:100×35%=35(人),
补全的条形统计图,如右图所示;
(3)由题意可得,
全校1800名学生中,喜爱踢足球的有:1800×$\frac{40}{100}$=720(人),
答:全校1800名学生中,大约有720人喜爱踢足球;
(4)设四名女生分别为:A(小红)、B(小梅)、C、D,
则出现的所有可能性是:
(A,B)、(A,C)、(A,D)、
(B,A)、(B,C)、(B,D)、
(C,A)、(C,B)、(C,D)、
(D,A)、(D,B)、(D,C),
∴小红、小梅能分在同一组的概率是:$\frac{4}{12}=\frac{1}{3}$.

点评 本替考查列表法与树状图法、扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网