题目内容

12.如图,△ABC中,CD、BE是边AB和AC上的高,点M在BE的延长线上,且BM=AC,点N在CD上,且AB=CN,则∠MAN的度数是90°.

分析 只要证明△ABM≌△NCA,可得∠BAM=∠CNA,由∠CNA=∠ADC+∠BAN=90°+∠BAN,∠BAM=∠MAN+∠BAN,即可推出∠MAN=90°.

解答 解:∵CD、BE是边AB和AC上的高,
∴∠ADC=∠AEB=90°,
∴∠ABM+∠BAC=90°,∠BAC+∠ACN=90°,
∴∠ABM=∠ACN,
在△ABM和△ACN中,
$\left\{\begin{array}{l}{AB=CN}\\{∠ABM=∠ACN}\\{BM=AC}\end{array}\right.$,
∴△ABM≌△NCA,
∴∠BAM=∠CNA,
∵∠CNA=∠ADC+∠BAN=90°+∠BAN,∠BAM=∠MAN+∠BAN,
∴∠MAN=90°.
故答案为90°

点评 本题考查全等三角形的判定和性质、三角形的外角的性质、三角形的高等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网