题目内容

3.在Rt△ABC中,∠ABC=90°,AC=5,BC=3,CD是∠ACB的平分线,将△ABC沿直线CD翻折,点A落在点E处,那么AE的长是2$\sqrt{5}$.

分析 由勾股定理求AB=4,再根据旋转的性持和角平分线可知:点A的对应点E在直线CB上,BE=2,利用勾股定理可求AE的长.

解答 解:∵CD是∠ACB的平分线,
∴将△ABC沿直线CD翻折,点A的对应点E在直线CB上,
∵∠ABC=90°,AC=5,BC=3,
∴AB=4,
由旋转得:EC=AC=5,
∴BE=5-3=2,
在Rt△ABE中,由勾股定理得:AE=$\sqrt{A{B}^{2}+B{E}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,
故答案为:2$\sqrt{5}$.

点评 本题考查了翻折变换的性质、勾股定理,明确折叠前后的两个角相等,两边相等;在图形中确定直角三角形,如果知道了一个直角三角形的两条边,可以利用勾股定理求第三边.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网