题目内容

19.解三元一次方程组:
(1)$\left\{\begin{array}{l}{3x-y+z=4}\\{2x+3y-z=12}\\{x+y+z=6}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x+z-3=0}\\{2x-y+2z=2}\\{x-y-z=-3}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{3x-y+z=4①}\\{2x+3y-z=12②}\\{x+y+z=6③}\end{array}\right.$,
①+②得:5x+2y=16④,
②+③得:3x+4y=18⑤,
④×2-⑤得:7x=14,即x=2,
把x=2代入④得:y=3,
把x=2,y=3代入③得:z=1,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=3}\\{z=1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+z-3=0①}\\{2x-y+2z=2②}\\{x-y-z=-3③}\end{array}\right.$,
②-③得:x+3z=5④,
④-①得:2z=2,即z=1,
把z=1代入④得:x=2,
把z=1,x=2代入③得:y=4,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=4}\\{z=1}\end{array}\right.$.

点评 此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网