题目内容
1.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:| 摸球的次数n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
| 摸到白球的次数m | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
| 摸到白球的频率$\frac{m}{b}$ | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(2)假如你摸一次,你摸到白球的概率P(白球)=0.6.
(3)试估算盒子里黑、白两种颜色的球各有多少只?
分析 (1)计算出其平均值即可;
(2)概率接近于(1)得到的频率;
(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数.
解答 解:(1)∵摸到白球的频率为0.6,
∴当n很大时,摸到白球的频率将会接近0.6.
故答案为0.6;
(2)∵摸到白球的频率为0.6,
∴假如你摸一次,你摸到白球的概率P(白球)=0.6,
故答案为0.6;
(3)盒子里黑、白两种颜色的球各有40-24=16,40×0.6=24.
点评 本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.
练习册系列答案
相关题目
12.若(a-1)2+|b-2|=0,则(a-b)2016的值是( )
| A. | -1 | B. | 1 | C. | 0 | D. | 2016 |
16.
如图,Rt△ABC中,AB=BC=2,D为BC的中点,在AC边上存在一点E,连接ED,EB,则EB+ED的最小值为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{2}+1$ | C. | $\sqrt{5}$ | D. | $2\sqrt{2}$ |