题目内容

13.如图,在△ABC中,∠C=90°,∠A>∠B.
(1)用直尺和圆规作AB的垂直平分线,交AB与D,交BC于E;(不写作法,保留作图痕迹)
(2)在(1)的条件下,若CE=DE,求∠A,∠B的度数.

分析 (1)利用基本作图(作线段的垂直平分线)作出DE;
(2)先利用角平分线性质定理的逆定理得到AE平分∠DAC,即∠CAE=∠BAE,再根据线段垂直平分线的性质定理得到EA=EB,则∠B=∠BAE,所以∠BAC=2∠B,再利用互余得到∠B+∠BAC=90°,于是得到∠B=30°,∠BAC=60°.

解答 解:(1)如图,DE为所作;

(2)连结AE,如图,
∵EC⊥AC,ED⊥AD,CE=DE,
∴AE平分∠DAC,即∠CAE=∠BAE,
∵ED垂直平分AB,
∴EA=EB,
∴∠B=∠BAE,
∴∠BAC=2∠B,
∵∠B+∠BAC=90°,
∴∠B=30°,∠BAC=60°.

点评 本题考查了基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网