题目内容

1.如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;
(1)求证:AC=2CF;
(2)连接AD,如果∠ADG=∠B,求证:CD2=AC•CF.

分析 (1)由BD=DE=EC知BE=2CE,由CF∥AB证△ABE∽△FCE得$\frac{AB}{FC}=\frac{BE}{CE}$=2,即AB=2FC,根据AB=AC即可得证;
(2)由∠1=∠B证△DAG∽△BAD得∠AGD=∠ADB,即∠B+∠2=∠5+∠6,结合∠B=∠5、∠2=∠3得∠3=∠6,再由CF∥AB得∠4=∠B,继而知∠4=∠5,即可证△ACD∽△DCF得CD2=AC•CF.

解答 证明:(1)∵BD=DE=EC,
∴BE=2CE,
∵CF∥AB,
∴△ABE∽△FCE,
∴$\frac{AB}{FC}=\frac{BE}{CE}$=2,即AB=2FC,
又∵AB=AC,
∴AC=2CF;

(2)如图,

∵∠1=∠B,∠DAG=∠BAD,
∴△DAG∽△BAD,
∴∠AGD=∠ADB,
∴∠B+∠2=∠5+∠6,
又∵AB=AC,∠2=∠3,
∴∠B=∠5,
∴∠3=∠6,
∵CF∥AB,
∴∠4=∠B,
∴∠4=∠5,
则△ACD∽△DCF,
∴$\frac{CD}{CF}=\frac{AC}{DC}$,即CD2=AC•CF.

点评 本题主要考查相似三角形的判定与性质,熟练掌握三角形外角性质和平行线的性质得出三角形相似所需要的条件是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网