题目内容

8.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,则CF,BC,CD三条线段之间有什么关系?并说明理由.

分析 (1)如图1,由∠BAC=90°,∠ABC=45°可得AB=AC,再根据正方形性质得AD=AF,∠DAF=90°,接着根据等角的余角相等得∠BAD=∠CAF,于是可根据“SAS”判断△BAD≌△CAF,得到BD=CF,所以CF+CD=BD+CD=BC;
(2)和(1)的方法一样可证明△BAD≌△CAF得到BD=CF,而BD=BC+CD,则CF-CD=BC.

解答 (1)证明:如图1,
∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAF}\\{AD=AF}\end{array}\right.$,
∴△BAD≌△CAF(SAS),
∴BD=CF,
∵BD+CD=BC,
∴CF+CD=BC;
(2)解:CF-CD=BC.理由如下:
如图2,
∵∠BAD=90°+∠CAD,
∠CAF=90°+∠CAD,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAF}\\{AD=AF}\end{array}\right.$,
∴△BAD≌△CAF(SAS),
∴BD=CF,
∵BD=BC+CD,
∴CF-CD=BC.

点评 本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网