题目内容

4.如图,锐角△ABC分别以A、B为直角顶点,向△ABC外作等腰直角三角形ACE和等腰直角三角形BCF,再分别过点E、F作边AB所在直线的垂线,垂足为M,N.
求证:EM+FN=AB.

分析 过C作CG垂直于AB,由EA垂直于AC,利用平角的定义得到一对角互余,再由CG垂直于AG,得到一对角互余,利用同角的余角相等得到一对角相等,再由一对直角相等及AE=AC,利用AAS得到三角形ACG与三角形AEM全等,利用全等三角形的对应边相等得到EM=AG,同理得到BG=FN,由AB=AG+GB,等量代换即可得证.

解答 解:如图,过C作CG⊥AB,

∴∠CAG+∠ACG=90°,
∵△AEC为等腰直角三角形,
∴∠EAC=90°,AE=AC,
∴∠CAG+∠EAM=90°,
∴∠ACG=∠EAM,
∵在△ACG和△EAM中,
$\left\{\begin{array}{l}{∠AGC=∠EMA}\\{∠ACG=∠EAM}\\{AC=AE}\end{array}\right.$,
∴△ACG≌△EAM(AAS),
∴EM=AG,
同理GB=FN,
∴AB=AG+GB=EM+FN.

点评 此题考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,圆周角定理,轴对称-最短线路问题,熟练掌握全等三角形的判定与性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网