题目内容
已知a2-4a-3=0,求代数式2a(a-1)-(a+1)2的值.
考点:整式的混合运算—化简求值
专题:计算题
分析:原式第一项利用单项式乘以多项式法则计算,第二项利用完全平方公式展开,去括号合并得到最简结果,将已知等式代入计算即可求出值.
解答:解:∵a2-4a-3=0,
∴a2-4a=3,
2a(a-1)-(a+1)2=2a2-2a-(a2+2a+1)=2a2-2a-a2-2a-1=a2-4a-1=3-1=2.
∴a2-4a=3,
2a(a-1)-(a+1)2=2a2-2a-(a2+2a+1)=2a2-2a-a2-2a-1=a2-4a-1=3-1=2.
点评:此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
如果0<x<1,比较x、x2、
、
的大小正确的是( )
| 1 |
| x |
| x |
A、
| ||||
B、
| ||||
C、
| ||||
| D、以上答案均不对 |