题目内容
5.已知方程组$\left\{\begin{array}{l}{{a}_{1}x+y={c}_{1}}\\{{a}_{2}x+y={c}_{2}}\end{array}\right.$解为$\left\{\begin{array}{l}{x=5}\\{y=10}\end{array}\right.$,则关于x,y的方程组$\left\{\begin{array}{l}{3{a}_{1}x+2y={a}_{1}+{c}_{1}}\\{3{a}_{2}x+2y={a}_{2}+{c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$.分析 根据方程组解的定义,把x=5,y=10代入即可得出a1,a2,c1,c2的关系,再代入计算即可.
解答 解:∵方程组$\left\{\begin{array}{l}{{a}_{1}x+y={c}_{1}}\\{{a}_{2}x+y={c}_{2}}\end{array}\right.$解为$\left\{\begin{array}{l}{x=5}\\{y=10}\end{array}\right.$,
∴$\left\{\begin{array}{l}{5{a}_{1}+10={c}_{1}}\\{5{a}_{2}+10={c}_{2}}\end{array}\right.$,
∵$\left\{\begin{array}{l}{3{a}_{1}x+2y={a}_{1}+{c}_{1}}\\{3{a}_{2}x+2y={a}_{2}+{c}_{2}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{3{a}_{1}x+2y=6{a}_{1}+10①}\\{3{a}_{2}x+2y=6{a}_{2}+10②}\end{array}\right.$,
①-②,得3a1x-3a2x=6a1-6a2,
∴x=2,
把x=2代入①得,y=5,
∴方程组$\left\{\begin{array}{l}{3{a}_{1}x+2y={a}_{1}+{c}_{1}}\\{3{a}_{2}x+2y={a}_{2}+{c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$,
故答案为$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$.
点评 本题考查了解二元一次方程组,掌握方程组的解法是解题的关键.