题目内容

8.解方程组$\left\{\begin{array}{l}{ax+by=2}\\{cx-7y=8}\end{array}\right.$时,某同学把c看错后得到$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$,而正确的解是$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$,那么a、b、c的值是(  )
A.a=4,b=5,c=2B.a,b,c的值不能确定
C.a=4,b=5,c=-2D.a,b不能确定,c=-2

分析 把$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$代入方程ax+by=2求出a-b=-1①,把$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$代入方程组$\left\{\begin{array}{l}{ax+by=2}\\{cx-7y=8}\end{array}\right.$得出$\left\{\begin{array}{l}{3a-2b=2②}\\{3c+14=8③}\end{array}\right.$解方程组③求出c,解由①②组成的方程组,求出a、b,即可得出选项.

解答 解:把$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$代入方程ax+by=2得:-2a+2b=2,
a-b=-1①,
把$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$代入方程组$\left\{\begin{array}{l}{ax+by=2}\\{cx-7y=8}\end{array}\right.$得:$\left\{\begin{array}{l}{3a-2b=2②}\\{3c+14=8③}\end{array}\right.$
解方程组③得:c=-2,
解由①②组成的方程组$\left\{\begin{array}{l}{a-b=-1}\\{3a-2b=2}\end{array}\right.$得:a=4,b=5,
故选C.

点评 本题考查了二元一次方程组的解,解二元一次方程组的应用,能理解二元一次方程组解的定义是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网