题目内容

5.如图,矩形ABCD的对角线AC与BD相交于点M,矩形MNPQ与矩形ABCD全等,射线MN与MQ分别交BC边于E、F两点,若AB=2,求证:$\frac{1}{M{E}^{2}}$+$\frac{1}{M{F}^{2}}$=1.

分析 $\frac{1}{M{E}^{2}}$+$\frac{1}{M{F}^{2}}$=1等价于$\frac{M{E}^{2}+M{F}^{2}}{M{E}^{2}•M{F}^{2}}$,而EM2+FM2=EF2,从而等价于$\frac{E{F}^{2}}{M{E}^{2}•M{F}^{2}}$,注意到∠EMF为直角,于是作MG⊥BC于G,则EM•FM=EF•EG,进而
EM2•FM2=EF2•EG2,而EG=$\frac{1}{2}$AB=1,结论水落石出.

解答 证明:过点M作MG⊥BC于G,如图,

∵ABCD是于矩形,AC交BD于M,
∴M是AC和BD的中点,
∴MG=$\frac{1}{2}$AB=1,
∵MNPQ为矩形,
∴∠EMF=90°,
∴EM•FM=EF•EG,
∴EM2•FM2=EF2•EG2
∵EM2+FM2=EF2
∴$\frac{1}{E{M}^{2}}+\frac{1}{F{M}^{2}}=\frac{E{M}^{2}+F{M}^{2}}{E{M}^{2}•F{M}^{2}}=\frac{E{F}^{2}}{E{M}^{2}•F{M}^{2}}$=$\frac{E{F}^{2}}{E{F}^{2}•E{G}^{2}}=\frac{1}{E{G}^{2}}=1$.

点评 本题主要考查了矩形的基本性质、勾股定理、中位线、等积变换等知识点,难度较大,是一道几何妙题.从结论出发结合条件不断地进行等价变形是解决本题的难度点和关键所在.

练习册系列答案
相关题目
10.数学问题:计算$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+…+\frac{1}{{m}^{n}}$*(其中m,n都是正整数,且m≥2,n≥1)
探究问题:为解决上面的数字问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.
探究一:计算$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$
第1次分割,把正方形的面积二等分,其中阴影部分的面积为$\frac{1}{2}$;
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为$\frac{1}{2}+\frac{1}{{2}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续二等分,…;

第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$,最后空白部分的面积是$\frac{1}{{2}^{n}}$.
根据第n次分割图可得等式:$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$.

探究二:计算$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为$\frac{2}{3}$;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为$\frac{2}{3}+\frac{2}{{3}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续三等分,…;

第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+…+\frac{2}{{3}^{n}}$,最后空白部分的面积是$\frac{1}{{3}^{n}}$.
根据第n次分割图可得等式:$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+…+\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$.
两边同除以2,得$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2×{3}^{n}}$\

探究三:计算$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$.
(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:根据前面探究结果:
$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$
$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2×{3}^{n}}$
$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$=$\frac{1}{3}$-$\frac{1}{3×{4}^{n}}$.

推出:$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+…+\frac{1}{{m}^{n}}$=$\frac{1}{m-1}$-$\frac{1}{(m-1){m}^{n}}$.(只填空,其中m、n都是正整数,且m≥2,n≥1)
拓广应用:计算$\frac{5-1}{5}+\frac{{5}^{2}-1}{{5}^{2}}+\frac{{5}^{3}-1}{{5}^{3}}+…+\frac{{5}^{n}-1}{{5}^{n}}$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网