题目内容

15.在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与中线CD,边CB相交于点H,E,AH=2CH,请画出示意图并求出sinB的值.

分析 根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAH,由AH=2CH,可得出CH:AC=1:$\sqrt{5}$,即可得出sinB的值;

解答 解:根据题意画出图形如图所示,

∵∠ACB=90°,CD是斜边AB上的中线,
∴CD=BD,
∴∠B=∠BCD,
∵AE⊥CD,
∴∠CAH+∠ACH=90°,
又∠ACB=90°
∴∠BCD+∠ACH=90°
∴∠B=∠BCD=∠CAH,即∠B=∠CAH,
∵AH=2CH,
∴由勾股定理得AC=$\sqrt{5}$CH,
∴CH:AC=1:$\sqrt{5}$,
∴sinB=$\frac{\sqrt{5}}{5}$.

点评 此题是解直角三角形,主要考查了解直角三角形以及直角三角形斜边上的中线,垂线,锐角三角函数,注意性质的应用,难度不大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网