题目内容

17.如图,在△ABC中,点D是BC的中点,点E、F分别在线段AD及其延长线上,且DE=DF.下列条件使四边形BECF为菱形的是(  )
A.BE⊥CEB.BF∥CEC.BE=CFD.AB=AC

分析 根据等腰三角形的性质和已知求出EF⊥BC,BD=DC,先根据平行四边形的判定得出四边形BECF是平行四边形,再根据菱形的判定推出即可.

解答 解:条件是AB=AC,
理由是:∵AB=AC,点D是BC的中点,
∴EF⊥BC,BD=DC,
∵DE=DF,
∴四边形BECF是平行四边形,
∵EF⊥BC,
∴四边形BECF是菱形,
选项A、B、C的条件都不能推出四边形BECF是菱形,
即只有选项D正确,选项A、B、C都错误;
故选D.

点评 本题考查了等腰三角形的性质,平行四边形的判定,菱形的判定的应用,能熟记菱形的判定定理是解此题的关键,注意:对角线相等的平行四边形是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网