题目内容

9.如图,定点C、动点D在⊙O上,并且位于直径AB的两侧,AB=10,AC=6,过点C在作CE⊥CD交DB的延长线于点E,则线段CE长度的最大值为(  )
A.$\frac{20}{3}$B.$\frac{40}{3}$C.16D.$\frac{64}{5}$

分析 当CD是直径时,CE最长,由AB是直径,得到∠ACB=90°,利用勾股定理得出BC的长度,又因为∠A=∠D,∠ABC=∠ACE=90°,推出△ABC∽△DCE,根据相似三角形的性质列方程求解.

解答 解:当CD是直径时,CE最长,
∵AB是直径,
∴∠ACB=90°,
∴BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=$\sqrt{1{0}^{2}-{6}^{2}}$=8,
∵∠A=∠D,∠ABC=∠DCE=90°,
∴△ABC∽△DCE,
∴$\frac{AC}{CD}$=$\frac{BC}{CE}$,
即$\frac{6}{10}$=$\frac{8}{CE}$,
∴CE=$\frac{40}{3}$.
故选:B.

点评 本题考查了相似三角形的判定和性质,圆周角定理,解直角三角形,勾股定理的应用,确定CE什么时候取最大值是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网