ÌâÄ¿ÄÚÈÝ

16£®ÏÈÔĶÁÏÂÁвÄÁÏ£¬ÔÙ½â´ðºóÃæµÄÎÊÌ⣮
Çó1+2+22+23+24+¡­+2100µÄºÍ£®
½â£ºÉèS=1+2+22+23+24+¡­+2100£®¢Ù
½«¢ÙʽÁ½±ßͬʱ³ËÒÔ2£¬µÃ£º
2S=2+22+23+24+25+¡­+2101£®¡¡¡¡ ¢Ú
¢Ú-¢Ù£¬µÃ
2S-S=2101-1£®
¼´           S=2101-1
ËùÒÔ1+2+22+23+24+¡­+2100=2101-1
ÎÊÌâ½â´ð£º
£¨1£©²ÂÏë1+2+22+23+¡­+22016µÄºÍ£¬²¢Ð´³ö¼ÆËã¹ý³Ì£»
£¨2£©Çó1+32+34+36+38+¡­+32nµÄºÍ£¨ÆäÖÐnΪÕýÕûÊý£©£»
£¨3£©¼ÇSn=1+32+34+36+38+¡­+32n£¨ÆäÖÐnΪÕýÕûÊý£©£¬ÊÔ˵Ã÷£º$\sqrt{\frac{8{S}_{2n}+1}{9}}$=$\frac{8{S}_{n}+1}{9}$£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÒÔÇóµÃÌâÄ¿ÖÐËùÇóʽ×ÓµÄÖµ£»
£¨2£©¸ù¾ÝÌâÄ¿ÖеÄÐÅÏ¢£¬¶ÔËùÇóʽ×Ó±äÐμ´¿É½â´ð±¾Ì⣻
£¨3£©¸ù¾Ý£¨2£©ÖеĽá¹û·Ö±ð»¯¼òËùÒªÖ¤Ã÷µÄʽ×Ó¼´¿É½â´ð±¾Ì⣮

½â´ð ½â£º£¨1£©1+2+22+23+24+¡­+22016=22017-1£®
ÉèS=1+2+22+23+24+¡­+22016¢Ù
½«¢ÙʽÁ½±ßͬʱ³ËÒÔ2£¬µÃ£º
2S=2+22+23+24+25+¡­+22017¢Ú
¢Ú-¢Ù£¬µÃ2S-S=22017-1£®¼´ S=22017-1£¬
ËùÒÔ1+2+22+23+24+¡­+22016=22017-1£»

£¨2£©ÉèS=1+32+34+36+38+¡­+32n¢Ù
½«¢ÙʽÁ½±ßͬʱ³ËÒÔ32£¬µÃ£º9S=32+34+36+38+¡­+32n+2¢Ú
¢Ú-¢Ù£¬µÃ9S-S=32n+2-1£®¼´S=$\frac{{3}^{2n+2}-1}{8}$£»
£¨3£©ÓÉ£¨2£©¿ÉµÃ£¬Sn=$\frac{{3}^{2n+2}-1}{8}$£¬S2n=$\frac{{3}^{4n+2}-1}{8}$£¬
¡à$\sqrt{\frac{8{S}_{2n}+1}{9}}=\sqrt{\frac{8¡Á\frac{{3}^{4n+2}-1}{8}+1}{9}}$=$\sqrt{\frac{{3}^{4n+2}}{9}}$=$\frac{{3}^{2n+1}}{3}$£¬
$\frac{8{S}_{n}+1}{9}=\frac{8¡Á\frac{{3}^{2n+2}-1}{8}+1}{9}=\frac{{3}^{2n+2}}{9}$=$\frac{{3}^{2n+1}}{3}$£¬
¡à$\sqrt{\frac{8{S}_{2n}+1}{9}}$=$\frac{8{S}_{n}+1}{9}$£®

µãÆÀ ±¾Ì⿼²éʵÊýµÄÔËË㣬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öÊý×ÖµÄ±ä»¯ÌØµã£¬Ã÷ȷʵÊýÔËËãµÄ·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø