ÌâÄ¿ÄÚÈÝ
16£®ÏÈÔĶÁÏÂÁвÄÁÏ£¬ÔÙ½â´ðºóÃæµÄÎÊÌ⣮Çó1+2+22+23+24+¡+2100µÄºÍ£®
½â£ºÉèS=1+2+22+23+24+¡+2100£®¢Ù
½«¢ÙʽÁ½±ßͬʱ³ËÒÔ2£¬µÃ£º
2S=2+22+23+24+25+¡+2101£®¡¡¡¡ ¢Ú
¢Ú-¢Ù£¬µÃ
2S-S=2101-1£®
¼´ S=2101-1
ËùÒÔ1+2+22+23+24+¡+2100=2101-1
ÎÊÌâ½â´ð£º
£¨1£©²ÂÏë1+2+22+23+¡+22016µÄºÍ£¬²¢Ð´³ö¼ÆËã¹ý³Ì£»
£¨2£©Çó1+32+34+36+38+¡+32nµÄºÍ£¨ÆäÖÐnΪÕýÕûÊý£©£»
£¨3£©¼ÇSn=1+32+34+36+38+¡+32n£¨ÆäÖÐnΪÕýÕûÊý£©£¬ÊÔ˵Ã÷£º$\sqrt{\frac{8{S}_{2n}+1}{9}}$=$\frac{8{S}_{n}+1}{9}$£®
·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÒÔÇóµÃÌâÄ¿ÖÐËùÇóʽ×ÓµÄÖµ£»
£¨2£©¸ù¾ÝÌâÄ¿ÖеÄÐÅÏ¢£¬¶ÔËùÇóʽ×Ó±äÐμ´¿É½â´ð±¾Ì⣻
£¨3£©¸ù¾Ý£¨2£©ÖеĽá¹û·Ö±ð»¯¼òËùÒªÖ¤Ã÷µÄʽ×Ó¼´¿É½â´ð±¾Ì⣮
½â´ð ½â£º£¨1£©1+2+22+23+24+¡+22016=22017-1£®
ÉèS=1+2+22+23+24+¡+22016¢Ù
½«¢ÙʽÁ½±ßͬʱ³ËÒÔ2£¬µÃ£º
2S=2+22+23+24+25+¡+22017¢Ú
¢Ú-¢Ù£¬µÃ2S-S=22017-1£®¼´ S=22017-1£¬
ËùÒÔ1+2+22+23+24+¡+22016=22017-1£»
£¨2£©ÉèS=1+32+34+36+38+¡+32n¢Ù
½«¢ÙʽÁ½±ßͬʱ³ËÒÔ32£¬µÃ£º9S=32+34+36+38+¡+32n+2¢Ú
¢Ú-¢Ù£¬µÃ9S-S=32n+2-1£®¼´S=$\frac{{3}^{2n+2}-1}{8}$£»
£¨3£©ÓÉ£¨2£©¿ÉµÃ£¬Sn=$\frac{{3}^{2n+2}-1}{8}$£¬S2n=$\frac{{3}^{4n+2}-1}{8}$£¬
¡à$\sqrt{\frac{8{S}_{2n}+1}{9}}=\sqrt{\frac{8¡Á\frac{{3}^{4n+2}-1}{8}+1}{9}}$=$\sqrt{\frac{{3}^{4n+2}}{9}}$=$\frac{{3}^{2n+1}}{3}$£¬
$\frac{8{S}_{n}+1}{9}=\frac{8¡Á\frac{{3}^{2n+2}-1}{8}+1}{9}=\frac{{3}^{2n+2}}{9}$=$\frac{{3}^{2n+1}}{3}$£¬
¡à$\sqrt{\frac{8{S}_{2n}+1}{9}}$=$\frac{8{S}_{n}+1}{9}$£®
µãÆÀ ±¾Ì⿼²éʵÊýµÄÔËË㣬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öÊý×ÖµÄ±ä»¯ÌØµã£¬Ã÷ȷʵÊýÔËËãµÄ·½·¨£®
| ½øÇòÊý£¨¸ö£© | 8 | 7 | 6 | 5 | 4 | 3 |
| ÈËÊý | 2 | 1 | 4 | 7 | 8 | 2 |
£¨1£©ÑµÁ·ºóÀºÇò¶¨Ê±¶¨µãͶÀºÈ˾ù½øÇòÊýΪ¶àÉÙ¸ö£¿
£¨2£©Ñ¡Ôñ³¤ÅÜѵÁ·µÄÈËÊýռȫ°àÈËÊýµÄ°Ù·Ö±ÈÊÇ10%£¬¸Ã°à¹²ÓÐͬѧ40ÈË£»
£¨3£©¸ù¾Ý²âÊÔ×ÊÁÏ£¬²Î¼ÓÀ¶Çò¶¨Ê±¶¨µãͶÀºµÄѧÉúѵÁ·ºó±ÈѵÁ·Ç°µÄÈ˾ù½øÇòÔö¼ÓÁË25%£¬Çó²Î¼ÓѵÁ·Ö®Ç°µÄÈ˾ù½øÇòÊý£®
| A£® | B£® | C£® | D£® |
| A£® | $\root{3}{9}$ | B£® | ¡À$\root{3}{3}$ | C£® | 3 | D£® | ¡À$\root{3}{9}$ |