ÌâÄ¿ÄÚÈÝ

11£®Èçͼ£¬ÁâÐÎABCDµÄ±ßBCÔÚxÖáÉÏ£¬µãA£¬DÔÚµÚÒ»ÏóÏÞ£¬Ïß¶ÎAB½»yÖáÓÚE£¬ÇÒEΪABµÄÖе㣬µãMΪACºÍBDµÄ½»µã£¬Á¬½ÓCE£¬ÓÐCE¡ÍAB£¬µãAµÄ×ø±êΪ£¨1£¬2$\sqrt{3}$£©£»
£¨1£©ÇóÖ±ÏßCEµÄ½âÎöʽ£»
£¨2£©µãP´ÓÔ­µã³ö·¢£¬ÑØxÖáÕý·½ÏòÒÔÿÃë1¸öµ¥Î»Ô˶¯£¬Ô˶¯Ê±¼äΪt£¬¹ýµãP×÷PQ¡ÍBC½»ÉäÏßECÓÚµãQ£¬¡÷BCQÃæ»ýΪS£¬ÇóSÓëtÖ®¼äµÄ¹ØÏµÊ½²¢Ö±½Óд³ötµÄȡֵ·¶Î§£»
£¨3£©BDÉÏÊÇ·ñ´æÔÚµãF£¬Ê¹¡÷CEFΪֱ½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öÏß¶ÎMFµÄ³¤£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÏÈÇó³öC¡¢EÁ½µã×ø±ê£¬ÔÙÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣮
£¨2£©Èçͼ2ÖУ¬·ÖÁ½ÖÖÇéÐ΢ٵ±0£¼t¡Ü3ʱ£¬PC=3-t£¬PQ=$\frac{\sqrt{3}}{3}$£¨3-t£©£¬¢Úµ±t£¾3ʱ£¬PC=t-3£¬¸ù¾ÝS=$\frac{1}{2}$•BC•PQ=¼´¿É½â¾öÎÊÌ⣮
£¨3£©´æÔÚ£®Èçͼ3ÖУ¬ÓÉÌâÒâÖ±ÏßBDµÄ½âÎöʽΪy=$\frac{\sqrt{3}}{3}$x+$\frac{\sqrt{3}}{3}$£¬ÉèF£¨m£¬$\frac{\sqrt{3}}{3}$$\frac{3\sqrt{3}+\sqrt{11}}{4}$m+$\frac{\sqrt{3}}{3}$£©£¬µ±µãFÊÇRt¡÷CEFµÄÖ±½Ç¶¥µãʱ£¬CE2=CF2+EF2£¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣬µ±FÓëDÖØºÏʱ£¬¡÷ECFÊÇÖ±½ÇÈý½ÇÐΣ¬´ËʱMF1=2$\sqrt{3}$£¬µ±FÓëBÖØºÏʱ£¬¡÷ECFÊÇÖ±½ÇÈý½ÇÐΣ¬´ËʱMF2=2$\sqrt{3}$£¬

½â´ð ½â£º£¨1£©Èçͼ1ÖУ¬×÷AK¡ÍBCÓÚK£®

¡ßËıßÐÎABCDÊÇÁâÐΣ¬
¡àAB=BC=CD=AD£¬
¡ßCE¡ÍAB£¬EA=EB£¬
¡àCA=CB=AB£¬
¡à¡÷ABC¡¢¡÷ACDÊǵȱßÈý½ÇÐΣ¬
¡ßA£¨1£¬2$\sqrt{3}$£©£¬
¡àAK=2$\sqrt{3}$£¬
ÔÚRt¡÷AKCÖУ¬¡ß¡ÏAKC=90¡ã£¬¡ÏCAK=30¡ã£¬
¡àKC=2£¬AC=AB=BC=4£¬
¡àBO=OK=1£¬OE=$\frac{1}{2}$AK=$\sqrt{3}$£¬
¡àE£¨0£¬$\sqrt{3}$£©£¬C£¨3£¬0£©£¬
ÉèÖ±ÏßCEµÄ½âÎöʽΪy=kx+bÔòÓÐ$\left\{\begin{array}{l}{b=\sqrt{3}}\\{3k+b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{\sqrt{3}}{3}}\\{b=\sqrt{3}}\end{array}\right.$£¬
¡àÖ±ÏßCEµÄ½âÎöʽΪy=-$\frac{\sqrt{3}}{3}$x+$\sqrt{3}$£®

£¨2£©Èçͼ2ÖУ¬

¢Ùµ±0£¼t¡Ü3ʱ£¬PC=3-t£¬PQ=$\frac{\sqrt{3}}{3}$£¨3-t£©£¬
¡àS=$\frac{1}{2}$•BC•PQ=$\frac{1}{2}$•4•$\frac{\sqrt{3}}{3}$£¨3-t£©=-$\frac{2\sqrt{3}}{3}$t+2$\sqrt{3}$£®
¢Úµ±t£¾3ʱ£¬PC=t-3£¬
¡àS=$\frac{1}{2}$•BC•PQ=$\frac{1}{2}$•4•$\frac{\sqrt{3}}{3}$£¨t-3£©=$\frac{2\sqrt{3}}{3}$t-2$\sqrt{3}$£®
×ÛÉÏËùÊö£¬S=$\left\{\begin{array}{l}{-\frac{2\sqrt{3}}{3}t+2\sqrt{3}}&{£¨0£¼t¡Ü3£©}\\{\frac{2\sqrt{3}}{3}t-2\sqrt{3}}&{£¨t£¾3£©}\end{array}\right.$£®

£¨3£©´æÔÚ£®ÀíÓÉÈçÏ£¬Èçͼ3ÖУ¬

ÓÉÌâÒâÖ±ÏßBDµÄ½âÎöʽΪy=$\frac{\sqrt{3}}{3}$x+$\frac{\sqrt{3}}{3}$£¬ÉèF£¨m£¬$\frac{\sqrt{3}}{3}$$\frac{3\sqrt{3}+\sqrt{11}}{4}$m+$\frac{\sqrt{3}}{3}$£©£¬
µ±µãFÊÇRt¡÷CEFµÄÖ±½Ç¶¥µãʱ£¬CE2=CF2+EF2£¬
¡à32+£¨$\sqrt{3}$£©2=m2+£¨$\frac{\sqrt{3}}{3}$m+$\frac{\sqrt{3}}{3}$-$\sqrt{3}$£©2+£¨m-3£©2+£¨$\frac{\sqrt{3}}{3}$m+$\frac{\sqrt{3}}{3}$£©2£¬
ÕûÀíµÃ2m2-5m-1=0£¬½âµÃm=$\frac{5-\sqrt{33}}{4}$»ò$\frac{5+\sqrt{33}}{4}$£¬
¡àF3£¨$\frac{5+\sqrt{33}}{4}$£¬$\frac{3\sqrt{3}+\sqrt{11}}{4}$£©£¬F4£¨$\frac{5-\sqrt{33}}{4}$£¬$\frac{3\sqrt{3}-\sqrt{11}}{4}$£©£¬
¡ßM£¨2£¬$\sqrt{3}$£©£¬
¡àF3M=$\frac{\sqrt{11}-\sqrt{3}}{2}$£¬F4M=$\frac{\sqrt{11}+\sqrt{3}}{2}$£¬
µ±FÓëDÖØºÏʱ£¬¡÷ECFÊÇÖ±½ÇÈý½ÇÐΣ¬´ËʱMF1=2$\sqrt{3}$£¬
µ±FÓëBÖØºÏʱ£¬¡÷ECFÊÇÖ±½ÇÈý½ÇÐΣ¬´ËʱMF2=2$\sqrt{3}$£¬
×ÛÉÏËùÊö£¬µ±¡÷CEFΪֱ½ÇÈý½ÇÐÎʱ£¬MFµÄ³¤Îª2$\sqrt{3}$»ò$\frac{\sqrt{11}-\sqrt{3}}{2}$»ò$\frac{\sqrt{11}+\sqrt{3}}{2}$£®

µãÆÀ ±¾Ì⿼²éÒ»´Îº¯Êý×ÛºÏÌâ¡¢´ý¶¨ÏµÊý·¨¡¢Ö±½ÇÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Èý½ÇÐεÄÃæ»ýµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃÕâЩ֪ʶ£¬Ñ§»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø