题目内容

16.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为($\frac{1}{2}$,1),下列结论:①abc>0;②a=b;③a=4c-4;④方程ax2+bx+c=1有两个相等的实数根,其中正确的结论是③④.(只填序号即可).

分析 ①根据抛物线的开口方向、对称轴位置和抛物线与y轴的交点坐标即可确定;
②根据抛物线的对称轴即可判定;
③根据抛物线的顶点坐标及b=-a即可判定;
④根据抛物线的最大值为1及二次函数与一元二次方程的关系即可判定.

解答 解:①∵根据图示知,抛物线开口方向向下,
∴a<0.
由对称轴在y轴的右侧知b>0,
∵抛物线与y轴正半轴相交,
∴c>0,
∴abc<0.故①错误;

②∵抛物线的对称轴直线x=-$\frac{b}{2a}$=$\frac{1}{2}$,
∴a=-b.
故②错误;

③∵该抛物线的顶点坐标为($\frac{1}{2}$,1),
∴1=$\frac{4ac-{b}^{2}}{4a}$,
∴b2-4ac=-4a.
∵b=-a,
∴a2-4ac=-4a,
∵a≠0,等式两边除以a,
得a-4c=-4,即a=4c-4.
故③正确;

④∵二次函数y=ax2+bx+c的最大值为1,即ax2+bx+c≤1,
∴方程ax2+bx+c=1有两个相等的实数根.
故④正确.
综上所述,正确的结论有③④.
故答案为:③④.

点评 本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)的系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网