题目内容

5.如图,∠BAD=90°,射线AC平分∠BAE.
(1)当∠CAD=30°时,∠BAC=(60)°.
(2)当∠DAE=48°时,求∠CAD的度数.
理由如下:由∠BAD=90°与∠DAE=48°,可得∠BAE=(138)°
由射线AC平分∠BAE,可得∠CAE=∠BAC=(69)°
所以,∠CAD=(21)°.

分析 (1)直接利用∠BAD=90°,∠CAD=30°,求出答案即可;
(2)结合已知利用角平分线的性质得出答案.

解答 解:(1)∵∠BAD=90°,∠CAD=30°,
∴∠BAC=90°-30°=60°;
故答案为:60;

(2)由∠BAD=90°与∠DAE=48°,可得∠BAE=138°
由射线AC平分∠BAE,可得∠CAE=∠BAC=69°
所以,∠CAD=21°.
故答案为:138,69,21.

点评 此题主要考查了角平分线的定义以及互余两角的定义,正确应用角平分线的性质是解题关键.

练习册系列答案
相关题目
17.概念学习
规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.  类比有理数的乘方,我们把2÷2÷2记作2,读作“2的圈2次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3),读作“-3的圈4次方”,一般地,把$\underbrace{a÷a÷a÷…÷a}_{n个a}$(a≠0)记作a?,读作“a的圈n次方”.
初步探究
(1)直接写出计算结果:2=$\frac{1}{2}$,$(-\frac{1}{2})$=-$\frac{1}{8}$;
(2)关于除方,下列说法错误的是C
A.任何非零数的圈2次方都等于1;             B.对于任何正整数n,1?=1;
C.3=4       D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.
深入思考
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)=$\frac{1}{{3}^{2}}$;5=$\frac{1}{{5}^{4}}$;<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>(-12)$(-\frac{1}{2})$=$\frac{1}{{2}^{8}}$.
(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于$\frac{1}{{a}^{n-2}}$;
(3)算一算:${12^2}÷{(-\frac{1}{3})^④}×{(-\frac{1}{2})^⑤}-{(-\frac{1}{3})^⑥}÷{3^3}$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网