题目内容
考点:三角形中位线定理,三角形内角和定理
专题:
分析:首先,利用三角形内角和定理求得∠AED=70°;然后根据三角形中位线定理推知DE∥BC,∠C=∠AED.
解答:解:如图,∵在△AED中,∠A=50°,∠ADE=60°,
∴∠AED=70°.
又∵点D,E分别是AB,AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,
∴∠C=∠AED=70°.
故答案是:70°.
∴∠AED=70°.
又∵点D,E分别是AB,AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,
∴∠C=∠AED=70°.
故答案是:70°.
点评:本题考查了三角形中位线定理和三角形内角和定理.解题时,要挖掘出隐含在题干中的已知条件:三角形内角和是180度.
练习册系列答案
相关题目
如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线三角形系数”,若抛物线三角形系数为[-1,b,0]的“抛物线三角形”是等腰直角三角形,则b的值( )
| A、±2 | B、±3 | C、2 | D、3 |