题目内容

5.算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是(  )
A.4B.2C.8D.6

分析 先配一个(2-1),则可利用平方差公式计算出原式=264,然后利用底数为2的正整数次幂的个位数的规律求解.

解答 解:原式=(2-1)(2+1)×(22+1)×(24+1)×…×(232+1)+1
=(22-1)×(22+1)×(24+1)×…×(232+1)+1
=(24-1)×(24+1)×…×(232+1)+1
=(232-1)×(232+1)+1
=264-1+1
=264
因为21=2,22=4,23=8,24=16,25=32,
所以底数为2的正整数次幂的个位数是2、4、8、6的循环,
所以264的个位数是6.
故选D.

点评 本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a-b)=a2-b2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网