题目内容

18.如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.
(1)当∠AOB=20°时,求所作圆的半径;(结果精确到0.01cm)
(2)保持∠AOB=20°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)
(参考数据:sin10°≈0.174,cos10°≈0.985,sin20°≈0.342,cos20°≈0.940)

分析 (1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;
(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.

解答 解:(1)作OC⊥AB于点C,如图2所示,
由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=20°,
∴∠BOC=10°
∴AB=2BC=2OB•sin10°≈2×10×0.174≈3.5cm,
即所作圆的半径约为3.5cm;

(2)作AD⊥OB于点D,作AE=AB,如图3所示,
∵保持∠AOB=20°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,
∴折断的部分为BE,
∵∠AOB=20°,OA=OB,∠ODA=90°,
∴∠OAB=80°,∠OAD=70°,
∴∠BAD=10°,
∴BE=2BD=2AB•sin10°≈2×3.5×0.174≈1.2cm,
即铅笔芯折断部分的长度是1.2cm.

点评 本题考查解直角三角形的应用,解题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网