题目内容

13.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BN上截取线段BD,使BD=AB,连接AD,依据此图可求得tan75°的值为(  )
A.2$-\sqrt{3}$B.2+$\sqrt{3}$C.1+$\sqrt{3}$D.$\sqrt{3}-1$

分析 在直角三角形ABC中,利用30度所对的直角边等于斜边的一半表示出AB的长,再利用勾股定理求出BC的长,由CB+BD求出CD的长,在直角三角形ACD中,利用锐角三角函数定义求出所求即可.

解答 解:在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,
∴AB=BD=2k,∠BAD=∠BDA=15°,BC=$\sqrt{3}$k,
∴∠CAD=∠CAB+∠BAD=75°,
在Rt△ACD中,CD=CB+BD=$\sqrt{3}$k+2k,
则tan75°=tan∠CAD=$\frac{CD}{AC}$=$\frac{\sqrt{3}k+2k}{k}$=2+$\sqrt{3}$,
故选B

点评 此题考查了解直角三角形,涉及的知识有:勾股定理,含30度直角三角形的性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网