题目内容

已知二次函数y=-x2-7x+,若自变量x分别取x1、x2、x3,且0<x1<x2<x3,则对应的函数值y1、y2、y3的大小关系正确的是( )

A. y1>y2>y3 B. y1<y2<y3 C. y2>y3>y1 D. y2<y3<y1

A 【解析】∵二次函数y=-x2-7x+,∴此函数的对称轴为:x=-=-=-7.∵0y2>y3.
练习册系列答案
相关题目

函数的图象如图所示,则下列结论错误的是( )

A. a>0 B. b2-4ac>0

C. 的两根之和为负 D. 的两根之积为正

D 【解析】【解析】 ∵抛物线开口向上,∴a>0,故A正确. ∵抛物线与x轴有两个交点,∴b2-4ac>0,故B正确. 由图象可知, 一根为正,一根为负,且负根的绝对值大于正根的绝对值,∴两根之和为负,两根之积为负,故C正确,D错误. 故选D.

已知二次函数y=-x2+4,当-2≤x≤3时,函数的最小值是_____,最大值是____.

-5 4 【解析】试题解析:抛物线y=-x2+4,开口向下,有最大值为4,当x=3时有最小值为-5.

二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是( )

A. k<-3 B. k>-3 C. k<3 D. k>3

D 【解析】试题分析:∵当ax2+bx+c≥0,y=ax2+bx+c(a≠0)的图象在x轴上方, ∴此时y=|ax2+bx+c|=ax2+bx+c, ∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴上方部分的图象, ∵当ax2+bx+c<0时,y=ax2+bx+c(a≠0)的图象在x轴下方, ∴此时y=|ax2+bx+c|=﹣(ax2+b...

如图,斜坡AC的坡度(坡比)为1: ,AC=10米.坡顶有一垂直于水平面的旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.

6米. 【解析】 试题分析:如果延长BC交AD于E点,则CE⊥AD,要求BC的高度,就要知道BE和CE的高度,就要先求出AE的长度.直角三角形ACE中有坡比,由AC的长,那么就可求出AE的长,然后求出BE、CE的高度,BC=BE-CE,即可得出结果. 试题解析:延长BC交AD于E点,则CE⊥AD. 在Rt△AEC中,AC=10,由坡比为1:可知:∠CAE=30°, ∴...

如图,在坡度为1:3的山坡上种树,要求株距(相邻两树间的水平距离)是6米,则斜坡上相邻两树间的坡面距离是 米(结果保留根号).

2. 【解析】 试题分析:如图, Rt△ABC中,∠C=90°,tanA=,AC=6, ∴BC=AC•tanA=6×=2. 根据勾股定理,得:AB=. 即斜坡上相邻两树间的坡面距离是2米.

如图2 - 4所示,长方形ABCD的长为5 cm,宽为4 cm,如果将它的长和宽都减去x(cm),那么它剩下的小长方形AB′C′D′的面积为y(cm2).

(1)写出y与x的函数关系式;

(2)上述函数是什么函数?

(3)自变量x的取值范围是什么?

(1) y=x2-9x+20;(2) 二次函数;(3) 0<x<4. 【解析】试题分析:(1)根据长方形的面积公式,根据图示求解即可得到函数关系式; (2)通过二次函数的定义可判断; (3)根据x取值不能大于原方程的长方形的宽进行分析. 试题解析:(1)根据长方形的面积公式,得y=(5-x)·(4-x)=x2-9x+20,所以y与x的函数关系式为y=x2-9x+20. ...

下列由左到右的变形中,哪些是分解因式?哪些不是?请说出理由.

(1)a(x+y)=ax+ay;

(2)x2+2xy+y2-1=x(x+2y)+(y +1)(y-1);

(3)ax2-9a=a(x+3)(x-3);

(4)x2+2+=

(5)2a3=2a·a·a.

见解析 【解析】试题分析:根据因式分解的定义判断即可. 试题解析: 因为(1) (2)的右边都不是整式的积的形式.所以它们不是分解因式;(4)中, 都不是整式,(5)中的2a3不是多项式,所以它们也不是分解因式.只有(3)的左边是多项式,右边是整式的积的形式,所以(3)是分解因式.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网