题目内容

如图,斜坡AC的坡度(坡比)为1: ,AC=10米.坡顶有一垂直于水平面的旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.

6米. 【解析】 试题分析:如果延长BC交AD于E点,则CE⊥AD,要求BC的高度,就要知道BE和CE的高度,就要先求出AE的长度.直角三角形ACE中有坡比,由AC的长,那么就可求出AE的长,然后求出BE、CE的高度,BC=BE-CE,即可得出结果. 试题解析:延长BC交AD于E点,则CE⊥AD. 在Rt△AEC中,AC=10,由坡比为1:可知:∠CAE=30°, ∴...
练习册系列答案
相关题目

每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.

(1)水果商要把荔枝售价至少定为多少才不会亏本?

(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m= -10x+120,那么当销售单价定为多少时,每天获得的利润w最大?

(1)水果商要把荔枝售价至少定为6元/千克才不会亏本(2)当销售单价定为9元/千克时,每天可获利润w最大 【解析】分析:(1)设购进荔枝a千克,荔枝售价定为b元/千克时,水果商要不亏本,由题意建立不等式求出其值就可以了. (2)由(1)可知,每千克荔枝的平均成本为6元,再根据售价-进价=利润就可以表示出w,然后化为顶点式就可以求出最值. 本题解析: (1)设购进荔枝a千克,...

如图所示的是二次函数y=ax2+bx+c的图象,则一次函数y=ax-b的图象不经过( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

B 【解析】【解析】 由图象开口向上可知a>0,对称轴x=<0,得b>0.所以一次函数y=y=ax﹣b的图象经过第一、三、四象限,不经过第二象限.故选B.

某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为____.

y=a(1+x)2 【解析】试题分析:∵一月份新产品的研发资金为a元, 2月份起,每月新产品的研发资金与上月相比增长率都是x, ∴2月份研发资金为,∴三月份的研发资金为. 故答案为: .

如图,当小杰沿坡度i=1:5的坡面由B到A行走了26米时,小杰实际上升高度AC=_________米.(可以用根号表示)

【解析】试题分析:根据坡度的定义可设AC=x,BC=5x,再根据勾股定理即可列方程求解. 由题意设AC=x,BC=5x,则,解得, 则小杰实际上升高度米.

如图,市政府准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的正弦值为,则坡面AC的长度为( )m.

A.10 B.8 C.6 D.6

A. 【解析】 试题解析:∵天桥的坡面AC与地面BC的夹角∠ACB的正弦值为, ∴sinC=, 则, 解得:AC=10, 则坡面AC的长度为10m. 故选A.

如图,对称轴平行于y轴的抛物线与x轴交于(1,0)、(3,0)两点,则它的对称轴为____________________.

直线x=2 【解析】试题分析:当两点到对称轴距离相等时,则所对应的函数值相等,则二次函数的对称轴为:x==2.

(-2)2001+(-2)2002等于( )

A. -22001 B. -22002 C. 22001 D. -2

C 【解析】(-2)2001+(-2)2002=(-2)2001×(1-2)=22001,故选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网