题目内容

7.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′B,请求出A′B长度的最小值.

分析 利用已知点A′在以AD为直径的圆上,得出当点A′在BM上时,A′B长度取得最小值,进而得出BM的长,即可得出答案;

解答 解:如图,由折叠知A′M=AM,又M是AD的中点,可得MA=MA′=MD,
故点A′在以AD为直径的圆上,
由模型可知,当点A′在BM上时,A′B长度取得最小值,
∵边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,
∴BM=$\sqrt{{2}^{2}-1}$=$\sqrt{3}$,
故A′B的最小值为:$\sqrt{3}$-1.

点评 此题主要考查了菱形的性质以及勾股定理,得出A′点位置是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网