题目内容
15.分析 先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=CF=3,然后利用梯形的面积公式列式计算即可得解.
解答 解:∵△ABC沿着点B到点C的方向平移到△DEF的位置,
∴△ABC的面积=△DEF的面积,
∴阴影部分面积等于梯形ABEH的面积,
由平移的性质得,DE=AB=6,BE=CF=3,
∵AB=6,DH=2,
∴HE=DE-DH=6-2=4,
∴阴影部分的面积=$\frac{1}{2}$×(4+6)×3=15.
故答案为:3,15.
点评 本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.
练习册系列答案
相关题目
5.(1)如图1,AB=AD,∠B=∠D,∠1=∠2,求证:△ABC≌△ADE.
(2)如图2,已知,AD是△ABC的BC边上的中线,点E,F分别是AD及其延长线上的点,且DE=DF,求证:BF∥CE.
(2)如图2,已知,AD是△ABC的BC边上的中线,点E,F分别是AD及其延长线上的点,且DE=DF,求证:BF∥CE.
4.
如图所示,平面直角坐标系的原点O是等边△ABC的中心,A(0,1),把△ABC绕点O顺时针旋转,每秒旋转60°,则第2017秒时,点A的坐标为( )
| A. | (0,1) | B. | ($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$) | C. | ($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$) | D. | (-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$) |