题目内容
定义:n!=1×2×3×…×(n-1)×n,例如:4!=1×2×3×4,化简:
+
+
+…+
= .
| 1 |
| 2! |
| 2 |
| 3! |
| 3 |
| 4! |
| n |
| (n+1)! |
考点:有理数的混合运算
专题:新定义
分析:原式利用题中的新定义变形,找出规律,以此类推得到结果即可.
解答:解:原式=
+
+
+…+
=1-
+
+
+…+
=1-
+
+…+
=1-
+
+…+
=1-
+
+
+…+
…
=1-
+
=1-
+
=1-
.
故答案为:1-
.
| 2!-1 |
| 2! |
| 2 |
| 3! |
| 3 |
| 4! |
| n |
| (n+1)! |
=1-
| 1 |
| 2! |
| 2 |
| 3! |
| 3 |
| 4! |
| n |
| (n+1)! |
=1-
| 1 |
| 3! |
| 3 |
| 4! |
| n |
| (n+1)! |
=1-
| 4 |
| 4! |
| 3 |
| 4! |
| n |
| (n+1)! |
=1-
| 1 |
| 4! |
| 2 |
| 3! |
| 3 |
| 4! |
| n |
| (n+1)! |
…
=1-
| 1 |
| n! |
| n |
| (n+1)! |
=1-
| n+1 |
| (n+1)! |
| n |
| (n+1)! |
=1-
| 1 |
| (n+1)! |
故答案为:1-
| 1 |
| (n+1)! |
点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目