题目内容

16.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则线段ON的长为1.

分析 作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,再求出AH,MH,MB,CH/CO,然后证明△CON∽△CHM,再利用相似比可计算出ON的长

解答 解:作MH⊥AC于H,如图,
∵四边形ABCD为正方形,
∴∠MAH=45°,
∴△AMH为等腰直角三角形,
∴AH=MH=$\frac{\sqrt{2}}{2}$AM=$\frac{\sqrt{2}}{2}$×2=$\sqrt{2}$,
∵CM平分∠ACB,
∴BM=MH=$\sqrt{2}$,
∴AB=2+$\sqrt{2}$,
∴AC=$\sqrt{2}$AB=2$\sqrt{2}$+2,
∴OC=$\frac{1}{2}$AC=$\sqrt{2}$+1,CH=AC-AH=2$\sqrt{2}$+2-$\sqrt{2}$=2+$\sqrt{2}$,
∵BD⊥AC,
∴ON∥MH,
∴△CON∽△CHM,
∴$\frac{ON}{MH}$=$\frac{OC}{CH}$,即$\frac{ON}{\sqrt{2}}$=$\frac{\sqrt{2}+1}{2+\sqrt{2}}$,
∴ON=1.
故答案为1.

点评 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网