题目内容

如图,在矩形ABCD中,对角线AC、BD相交于点O,过点A作AE⊥BD,垂足为点E,若ED=3EO,AE=2
3
,求BD的长.
考点:矩形的性质,等边三角形的判定与性质
专题:几何图形问题
分析:根据矩形的对角线相等互相平分可得OB=OD,然后求出OE=BE,然后判断出△ABO是等边三角形,再根据等边三角形的性质求出边长AB即OB的长,然后根据BD=2OB计算即可得解.
解答:解:在矩形ABCD中,OB=OD,
∵ED=3OE,
∴OE=BE,
∴AE垂直平分OB,
∴AB=AO,
又∵OA=OB,
∴△ABO是等边三角形,
∵AE=2
3

∴OB=AB=2
3
÷
3
2
=4,
∴BD=2OB=2×4=8.
点评:本题考查了矩形的性质,等边三角形的判定与性质,主要利用了矩形的对角线相等且互相平分的性质,熟记性质是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网