题目内容
17.(1)求证:△BCE≌△ACD;
(2)求证:CF=CH;
(3)判断△CFH的形状并说明理由;
(4)求∠AOE的度数.
分析 (1)利用等边三角形的性质得出条件,可证明:△BCE≌△ACD;
(2)利用△BCE≌△ACD得出∠CBF=∠CAH,再运用平角定义得出∠BCF=∠ACH进而得出△BCF≌△ACH因此CF=CH.
(3)由CF=CH和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH是等边三角形.
(4)根据三角形内角和定理可得∠CAD+∠CDA=60°,而∠CAD=∠CBE,则∠CBE+∠CDA=60°,然后再利用三角形内角和定理即可得到∠BOD=120°,根据对顶角相等即可得到∠AOE的度数.
解答 解:(1)∵∠BCA=∠DCE=60°,
∴∠BCE=∠ACD,
在△BCE和△ACD中,
$\left\{\begin{array}{l}{BC=AC}\\{∠BCE=∠ACD}\\{CE=BD}\end{array}\right.$,
∴△BCE≌△ACD(SAS);
(2)∵△BCE≌△ACD,
∴∠CBF=∠CAH.
∵∠ACB=∠DCE=60°,
∴∠ACH=60°.
∴∠BCF=∠ACH,
在△BCF和△ACH中,
$\left\{\begin{array}{l}{∠CBF=∠CAH}\\{BC=AC}\\{∠BCF=∠ACH}\end{array}\right.$,![]()
∴△BCF≌△ACH(ASA),
∴CF=CH;
(3)∵CF=CH,∠ACH=60°,
∴△CFH是等边三角形.
(4)如图,
∵∠CAD+∠CDA=60°,
而∠CAD=∠CBE,
∴∠CBE+∠CDA=60°,
∴∠BOD=120°,
∴∠AOE=120°.
点评 本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.
| A. | a3•a2=a6 | B. | (π-3.14)0=1 | C. | 2-1=-2 | D. | x8÷x4=x2 |