题目内容

18.如图,△ABC为等腰三角形,AB=AC,D为△ABC内一点,连接AD,将线段AD绕点A旋转至AE,使得∠DAE=∠BAC,F,G,H分别为BC,CD,DE的中点,连接BD,CE,GF,GH.
(1)求证:GH=GF;
(2)试说明∠FGH与∠BAC互补.

分析 (1)首先得出△ABD≌△ACE(SAS),进而利用三角形中位线定理得出GH=GF;
(2)利用全等三角形的性质结合平行线的性质得出∠FGH=∠DGF+∠HGD进而得出答案.

解答 证明:(1)∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
在△ABD和△ACE中
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴BD=CE,
∵F,G,H分别为BC,CD,DE的中点,
∴HG∥CE,GF∥BD,且GH=$\frac{1}{2}$CE,GF=$\frac{1}{2}$BD,
∴GH=GF;

(2)∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∵HG∥CE,GF∥BD,
∴∠HGD=∠ECD,∠GFC=∠DBC,
∴∠HGD=∠ACD+∠ECA=∠ACD+∠ABD,
∠DGF=∠GFC+∠GCF=∠DBC+∠GCF,
∴∠FGH=∠DGF+∠HGD
=∠DBC+∠GCF+∠ACD+∠ABD
=∠ABC+∠ACB
=180°-∠BAC,
∴∠FGH与∠BAC互补.

点评 此题主要考查了全等三角形的判定与性质以及三角形中位线定理,正确得出△ABD≌△ACE是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网