题目内容

11.观察下图,填表后再回答问题:
序号123
图形
●的个数81624
☆的个数149
(1)在表格中填入正确的数:
(2)试求第6个图形中“●”的个数和“☆”的个数?
(3)试求第n个图形中“●”的个数和“☆”的个数?

分析 (1)由图中可以看出“●”的个数为4×4=16;“★”的个数为32=9;
(2)(3)易得所有图形中“●”的个数依次为8的1倍,2倍,3倍…;“★”的个数依次为12,22,32…据此可得所求答案.

解答 解:(1)填表如下:

序号123
图形
●的个数81624
☆的个数149
(2)∵图形中“●”的个数依次为8的1倍,2倍,3倍…;“★”的个数依次为12,22,32
∴第6图形中“●”有8×6=48个,“★”有62=36个;
(3)第n图形中“●”有8n个,“★”有n2个;

点评 此题考查图形的变化规律,找出图形之间的联系,得出运算规律,利用规律解决问题.

练习册系列答案
相关题目
6.【提出问题】如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,(其中n为奇数),连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
【探究发现】:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
如图②:四边形ABCD中,点E、F是AD的3等分点,点G、H是BC的3等分点,连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
如图③,连接EH、BE、DH,
因为△EGH与△EBH高相等,底的比是1:2,
所以S△EGH=$\frac{1}{2}$S△EBH
因为△EFH与△DEH高相等,底的比是1:2,
所以S△EFH=$\frac{1}{2}$S△DEH
所以S△EGH+S△EFH=$\frac{1}{2}$S△EBH+$\frac{1}{2}$S△DEH
即S四边形EFHG=$\frac{1}{2}$S四边形EBH
连接BD,
因为△DBE与△ABD高相等,底的比是2:3,
所以S△DBE=$\frac{2}{3}$S△ABD
因为△BDH与△BCD高相等,底的比是2:3,
所以S△BDH=$\frac{2}{3}$S△BCD
所以S△DBE+S△BDH=$\frac{2}{3}$S△ABD+$\frac{2}{3}$S△BCD=$\frac{2}{3}$(S△ABD+S△BCD)=$\frac{2}{3}$S四边形ABCD
即S四边形EBHD=$\frac{2}{3}$S四边形ABCD
所以S四边形EFHG=$\frac{1}{2}$S四边形EBHD=$\frac{1}{2}$×$\frac{2}{3}$S四边形ABCD=$\frac{1}{3}$S四边形ABCD
(1)如图④:四边形ABCD中,点E、F是AD的5等分点中最中间2个,点G、H是BC的5等分点中最中间2个,连接EG、FH,猜想:S四边形EFHG与S四边形ABCD之间有什么关系呢S四边形EFHG=$\frac{1}{5}$S四边形ABCD,验证你的猜想:
【问题解决】如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,连接EG、FH,(其中n为奇数)那么S四边形EFHG与S四边形ABCD之间的关系为:S四边形EFHG=$\frac{1}{n}$S四边形ABCD(不必写出求解过程)
【问题拓展】仿照上面的探究思路,若n为奇数,请再给出一个一般性结论.(画出图形,不必写出求解过程)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网