ÌâÄ¿ÄÚÈÝ
14£®Èçͼ1£¬Ïß¶ÎAB=12ÀåÃ×£¬¶¯µãP´ÓµãA³ö·¢ÏòµãBÔ˶¯£¬¶¯µãQ´ÓµãB³ö·¢ÏòµãAÔ˶¯£¬Á½µãͬʱ³ö·¢£¬µ½´ï¸÷×ÔµÄÖÕµãºóÍ£Ö¹Ô˶¯£®ÒÑÖª¶¯µãQÔ˶¯µÄËÙ¶ÈÊǶ¯µãPÔ˶¯µÄËٶȵÄ2±¶£®ÉèÁ½µãÖ®¼äµÄ¾àÀëΪs£¨ÀåÃ×£©£¬¶¯µãPµÄÔ˶¯Ê±¼äΪt£¨Ã룩£¬Í¼2±íʾsÓëtÖ®¼äµÄº¯Êý¹ØÏµ£®£¨1£©Ç󶯵ãP¡¢QÔ˶¯µÄËÙ¶È£»
£¨2£©Í¼2ÖУ¬a=3£¬b=6£¬c=6£»
£¨3£©µ±a¡Üt¡Ücʱ£¬ÇósÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½£¨¼´Ïß¶ÎMN¶ÔÓ¦µÄº¯Êý¹ØÏµÊ½£©£®
·ÖÎö £¨1£©É趯µãPÔ˶¯µÄËÙ¶ÈΪxÀåÃ×/Ã룬Ôò¶¯µãQÔ˶¯µÄËÙ¶ÈΪ2xÀåÃ×/Ã룬¸ù¾ÝͼÏó¿ÉÖª¾¹ý2ÃëÁ½µãÖ®¼äµÄ¾àÀëΪ0£¬¼´¾¹ý2ÃëÁ½µãÏàÓö£®¸ù¾ÝÏàÓöʱ£¬Á½µãÔ˶¯µÄ·³ÌÖ®ºÍ=12ÀåÃ×Áгö·½³Ì£¬Çó½â¼´¿É£»
£¨2£©¸ù¾ÝͼÏó¿ÉÖª£¬aµÄֵΪ¶¯µãQ´ÓµãBÔ˶¯µ½µãAµÄʱ¼ä£¬¸ù¾Ýʱ¼ä=·³Ì¡ÂËÙ¶ÈÁÐʽÇó³öa=3£»bµÄֵΪ¶¯µãPÔ˶¯3ÃëʱµÄ·³Ì£¬¸ù¾Ý·³Ì=ËÙ¶È¡Áʱ¼äÁÐʽÇó½â£»cµÄֵΪ¶¯µãP´ÓµãAÔ˶¯µ½µãBµÄʱ¼ä£¬¸ù¾Ýʱ¼ä=·³Ì¡ÂËÙ¶ÈÁÐʽÇó½â£»
£¨3£©µ±3¡Üt¡Ü6ʱ£¬ÉèsÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½Îªs=kt+b£¬½«£¨3£¬6£©£¬£¨6£¬12£©´úÈ룬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©É趯µãPÔ˶¯µÄËÙ¶ÈΪxÀåÃ×/Ã룬Ôò¶¯µãQÔ˶¯µÄËÙ¶ÈΪ2xÀåÃ×/Ã룬
¸ù¾ÝÌâÒ⣬µÃ2£¨x+2x£©=12£¬
½âµÃx=2£®
´ð£º¶¯µãP¡¢QÔ˶¯µÄËÙ¶È·Ö±ðÊÇ2ÀåÃ×/Ãë¡¢4ÀåÃ×/Ã룻
£¨2£©¶¯µãQÔ˶¯µÄʱ¼äa=$\frac{12}{4}$=3£»
¾¹ý3Ã룬¶¯µãQ´ÓµãBÔ˶¯µ½µãA£¬´Ëʱ¶¯µãPÔ˶¯µÄ·³ÌΪ2¡Á3=6£¬¼´b=6£»
¶¯µãPÔ˶¯µÄʱ¼äc=$\frac{12}{2}$=6£»
¹Ê´ð°¸Îª3£¬6£¬6£»
£¨3£©µ±3¡Üt¡Ü6ʱ£¬ÉèsÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½Îªs=kt+b£¬
¡ßͼÏó¹ýµã£¨3£¬6£©£¬£¨6£¬12£©£¬
¡à$\left\{\begin{array}{l}{3k+b=6}\\{6k+b=12}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=2}\\{b=0}\end{array}\right.$£¬
¡àsÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½Îªs=2t£¨3¡Üt¡Ü6£©£®
µãÆÀ ±¾Ì⿼²éÁ˶¯µãÎÊÌâµÄº¯ÊýͼÏó£¬Â·³Ì¡¢ËÙ¶ÈÓëʱ¼äµÄ¹ØÏµ£¬´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýµÄ½âÎöʽµÈ֪ʶµã£®½âÌâ¹Ø¼üÊÇÉî¿ÌÀí½â¶¯µãµÄº¯ÊýͼÏó£¬Á˽âͼÏóÖйؼüµãËù´ú±íµÄʵ¼ÊÒâÒ壬Àí½â¶¯µãµÄÍêÕûÔ˶¯¹ý³Ì£®
¢Ù¡÷APD¡Õ¡÷AEB£»
¢ÚµãBµ½Ö±ÏßAEµÄ¾àÀëΪ$\sqrt{2}$£»
¢ÛEB¡ÍED£»
¢ÜSÕý·½ÐÎABCD=4+$\sqrt{6}$£»
¢ÝS¡÷APD+S¡÷APB=1+$\sqrt{6}$£¬
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊÇ£¨¡¡¡¡£©
| A£® | ¢Ù¢Û¢Ü | B£® | ¢Ù¢Ú¢Ý | C£® | ¢Û¢Ü¢Ý | D£® | ¢Ù¢Û¢Ý |
| A£® | 57¡ã | B£® | 37¡ã | C£® | 143¡ã | D£® | 53¡ã |