ÌâÄ¿ÄÚÈÝ
Ñо¿ÎÊÌâ¾³£²ÉÓÃÓÉÌØÊâµ½Ò»°ãµÄ·½·¨£®ÔÚÊýѧѧϰ¹ý³ÌÖУ¬Í¨³£ÊÇÀûÓÃÒÑÓеÄ֪ʶÓë¾Ñ飬ͨ¹ý¶ÔÑо¿¶ÔÏó
½øÐй۲졢ʵÑé¡¢ÍÆÀí¡¢³éÏó¸ÅÀ¨£¬·¢ÏÖÊýѧ¹æÂÉ£¬½ÒʾÑо¿¶ÔÏóµÄ±¾ÖÊÌØÕ÷£®
£¨1£©±È½ÏÏÂÁи÷ʽµÄ´óС£®
£®
£®
£®
£¨2£©±È½ÏÔÀ´Ã¿¸ö·ÖÊý¶ÔӦзÖÊýµÄ´óС£¬¿ÉÒԵóöÏÂÃæµÄ½áÂÛ£º
Ò»¸öÕæ·ÖÊýÊÇ
£¨a£¬b¾ùΪÕýÊý£©£¬¸øÆä·Ö×Ó·Öĸͬ¼ÓÒ»¸öÕýÊým£¬µÃ
£¬ÔòÁ½¸ö·ÖÊýµÄ´óС¹ØÏµÊÇ
£®
¢ÙÇëÄãÓÃÎÄ×ÖÐðÊö£¨2£©ÖнáÂ۵ĺ¬Ò壺 £®
¢ÚÇëÓÃͼÐεÄÃæ»ý˵Ã÷Õâ¸ö½áÂÛ£®
½øÐй۲졢ʵÑé¡¢ÍÆÀí¡¢³éÏó¸ÅÀ¨£¬·¢ÏÖÊýѧ¹æÂÉ£¬½ÒʾÑо¿¶ÔÏóµÄ±¾ÖÊÌØÕ÷£®
£¨1£©±È½ÏÏÂÁи÷ʽµÄ´óС£®
| 1 |
| 3 |
| 1+1 |
| 3+1 |
| 2 |
| 5 |
| 2+1 |
| 5+1 |
| 3 |
| 4 |
| 3+1 |
| 4+1 |
£¨2£©±È½ÏÔÀ´Ã¿¸ö·ÖÊý¶ÔӦзÖÊýµÄ´óС£¬¿ÉÒԵóöÏÂÃæµÄ½áÂÛ£º
Ò»¸öÕæ·ÖÊýÊÇ
| a |
| b |
| a+m |
| b+m |
| a+m |
| b+m |
| a |
| b |
¢ÙÇëÄãÓÃÎÄ×ÖÐðÊö£¨2£©ÖнáÂ۵ĺ¬Ò壺
¢ÚÇëÓÃͼÐεÄÃæ»ý˵Ã÷Õâ¸ö½áÂÛ£®
¿¼µã£º·ÖʽµÄ»ìºÏÔËËã
רÌ⣺ÔĶÁÐÍ
·ÖÎö£º£¨1£©ÓÒ±ßʽ×Ó¼ÆËãµÃµ½½á¹û£¬¼´¿É×ö³öÅжϣ»
£¨2£©¹éÄÉ×ܽáµÃµ½Ò»°ãÐÔ¹æÂÉ£¬±È½Ï¼´¿É£»
¢Ù¸ù¾ÝµÃ³öµÄ½áÂÛд³ö¼´¿É£»
¢ÚÈçͼËùʾ£¬ÓÉËıßÐÎBEFGÓëABCD¶¼Îª¾ØÐΣ¬¸ù¾ÝaСÓÚb£¬Á½±ß³ËÒÔm£¬¼ÓÉÏab£¬±äÐκ󼴿ɵÃÖ¤£®
£¨2£©¹éÄÉ×ܽáµÃµ½Ò»°ãÐÔ¹æÂÉ£¬±È½Ï¼´¿É£»
¢Ù¸ù¾ÝµÃ³öµÄ½áÂÛд³ö¼´¿É£»
¢ÚÈçͼËùʾ£¬ÓÉËıßÐÎBEFGÓëABCD¶¼Îª¾ØÐΣ¬¸ù¾ÝaСÓÚb£¬Á½±ß³ËÒÔm£¬¼ÓÉÏab£¬±äÐκ󼴿ɵÃÖ¤£®
½â´ð£º
½â£º£¨1£©¸ù¾ÝÌâÒâµÃ£º
£¼
£»
£¼
£»
£¼
£»
£¨2£©Ò»¸öÕæ·ÖÊýÊÇ
£¨a£¬b¾ùΪÕýÊý£©£¬¸øÆä·Ö×Ó·Öĸͬ¼ÓÒ»¸öÕýÊým£¬µÃ
£¬ÔòÁ½¸ö·ÖÊýµÄ´óС¹ØÏµÊÇ
£¾
£»
¢ÙÇëÄãÓÃÎÄ×ÖÐðÊö£¨2£©ÖнáÂ۵ĺ¬Ò壺·ÖÊýµÄ·Ö×Ó·Öĸ¼ÓÉÏÏàͬµÄÕýÊý£¬·ÖÊýµÄÖµ±ä´ó£»
¢ÚÈçͼËùʾ£¬
¡ßËıßÐÎBEFGÊǾØÐΣ¬ËıßÐÎABCDÊǾØÐΣ¬a£¼b£¬
¡àam£¼bm£¬
¡àam+ab£¼bm+ab£¬¼´a£¨m+b£©£¼b£¨m+a£©£¬
¡à
£¼
£®
¹Ê´ð°¸Îª£º£¨1£©£¼£»£¼£»£¼£»£¨2£©£¾£»¢Ù·ÖÊýµÄ·Ö×Ó·Öĸ¼ÓÉÏÏàͬµÄÕýÊý£¬·ÖÊýµÄÖµ±ä´ó£®
| 1 |
| 3 |
| 1+1 |
| 3+1 |
| 2 |
| 5 |
| 2+1 |
| 5+1 |
| 3 |
| 4 |
| 3+1 |
| 4+1 |
£¨2£©Ò»¸öÕæ·ÖÊýÊÇ
| a |
| b |
| a+m |
| b+m |
| a+m |
| b+m |
| a |
| b |
¢ÙÇëÄãÓÃÎÄ×ÖÐðÊö£¨2£©ÖнáÂ۵ĺ¬Ò壺·ÖÊýµÄ·Ö×Ó·Öĸ¼ÓÉÏÏàͬµÄÕýÊý£¬·ÖÊýµÄÖµ±ä´ó£»
¢ÚÈçͼËùʾ£¬
¡ßËıßÐÎBEFGÊǾØÐΣ¬ËıßÐÎABCDÊǾØÐΣ¬a£¼b£¬
¡àam£¼bm£¬
¡àam+ab£¼bm+ab£¬¼´a£¨m+b£©£¼b£¨m+a£©£¬
¡à
| a |
| b |
| a+m |
| b+m |
¹Ê´ð°¸Îª£º£¨1£©£¼£»£¼£»£¼£»£¨2£©£¾£»¢Ù·ÖÊýµÄ·Ö×Ó·Öĸ¼ÓÉÏÏàͬµÄÕýÊý£¬·ÖÊýµÄÖµ±ä´ó£®
µãÆÀ£º´ËÌ⿼²éÁË·ÖʽµÄ»ìºÏÔËË㣬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿