题目内容

11.如果$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$是方程组$\left\{\begin{array}{l}{ax+by=0}\\{bx-cy=1}\end{array}\right.$的解,那么,下列各式中成立的是(  )
A.a+4c=2B.4a+c=2C.a+4c+2=0D.4a+c+2=0

分析 把$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$代入方程组$\left\{\begin{array}{l}{ax+by=0}\\{bx-cy=1}\end{array}\right.$可得:$\left\{\begin{array}{l}{-a+2b=0①}\\{-b-2c=1②}\end{array}\right.$,然后②×2+①可得:-a-4c=2,再整理可得答案.

解答 解:把$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$代入方程组$\left\{\begin{array}{l}{ax+by=0}\\{bx-cy=1}\end{array}\right.$可得:$\left\{\begin{array}{l}{-a+2b=0①}\\{-b-2c=1②}\end{array}\right.$,
②×2得:-2b-4c=2③,
①+③得:-a-4c=2,
a+4c+2=0,
故选:C.

点评 此题主要考查了二元一次方程组的解,关键是掌握二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网