ÌâÄ¿ÄÚÈÝ
9£®½èÖú¼ÆËãÆ÷¼ÆËãÏÂÁи÷ʽ£º£¨1£©$\sqrt{{4}^{2}+{3}^{2}}$=5£»
£¨2£©$\sqrt{{44}^{2}+{33}^{2}}$=55£»
£¨3£©$\sqrt{{444}^{2}+{333}^{2}}$=555£»
£¨4£©$\sqrt{{4444}^{2}+{3333}^{2}}$=5555£»
ÊÔ²ÂÏë$\sqrt{\underset{\underbrace{44¡{4}^{2}}}{2015¸ö}+\underset{\underbrace{33¡{3}^{2}}}{2015¸ö}}$µÄ½á¹ûΪ$\underset{\underbrace{55¡5}}{2015¸ö5}$£®
·ÖÎö Ê×Ïȸù¾ÝÊýµÄ¿ª·½µÄÔËËã·½·¨£¬·Ö±ðÇó³ö$\sqrt{{4}^{2}+{3}^{2}}$¡¢$\sqrt{{44}^{2}+{33}^{2}}$¡¢$\sqrt{{444}^{2}+{333}^{2}}$¡¢$\sqrt{{4444}^{2}+{3333}^{2}}$µÄÖµ¸÷ÊǶàÉÙ£»È»ºó¸ù¾ÝËùµÃµÄ½á¹û×ܽá³ö¹æÂÉ£¬²¢ÄÜÓ¦ÓÃ×ܽáµÄ¹æÂÉ£¬²ÂÏë$\sqrt{\underset{\underbrace{44¡{4}^{2}}}{2015¸ö}+\underset{\underbrace{33¡{3}^{2}}}{2015¸ö}}$µÄ½á¹ûΪ¶àÉÙ¼´¿É£®
½â´ð ½â£º¸ù¾Ý·ÖÎö£¬¿ÉµÃ
£¨1£©$\sqrt{{4}^{2}+{3}^{2}}$=5£»
£¨2£©$\sqrt{{44}^{2}+{33}^{2}}$=55£»
£¨3£©$\sqrt{{444}^{2}+{333}^{2}}$=555£»
£¨4£©$\sqrt{{4444}^{2}+{3333}^{2}}$=5555£»
²ÂÏë$\sqrt{\underset{\underbrace{44¡{4}^{2}}}{2015¸ö}+\underset{\underbrace{33¡{3}^{2}}}{2015¸ö}}$µÄ½á¹ûΪ£º$\underset{\underbrace{55¡5}}{2015¸ö5}$£®
¹Ê´ð°¸Îª£º5¡¢55¡¢555¡¢5555¡¢$\underset{\underbrace{55¡5}}{2015¸ö5}$£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˼ÆËãÆ÷-ÊýµÄ¿ª·½ÎÊÌ⣬ÒÔ¼°Ì½Ñ°¹æÂÉÎÊÌâµÄÓ¦Óã¬ÒªÊìÁ·ÕÆÎÕ£¬×¢Òâ¹Û²ì×ܽá³ö¹æÂÉ£¬²¢ÄÜÕýÈ·µÄÓ¦ÓùæÂÉ£®
| A£® | -2 | B£® | 0 | C£® | -$\frac{5}{2}$ | D£® | 2 |
| A£® | $\frac{AE}{EC}=\frac{1}{2}$ | B£® | $\frac{DE}{BC}=\frac{1}{2}$ | ||
| C£® | $\frac{¡÷ADEµÄÖܳ¤}{¡÷ABCµÄÖܳ¤}=\frac{1}{2}$ | D£® | $\frac{¡÷ADEµÄÃæ»ý}{¡÷ABCµÄÃæ»ý}=\frac{1}{3}$ |