题目内容

16.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是3.

分析 连接CE,设DE=x,则AE=8-x,判断出OE是AC的垂直平分线,即可推得CE=AE=8-x,然后在Rt△CDE中,根据勾股定理,求出DE的长是多少即可.

解答 解:如图,连接CE,

设DE=x,则AE=8-x,
∵OE⊥AC,且点O是AC的中点,
∴OE是AC的垂直平分线,
∴CE=AE=8-x,
在Rt△CDE中,
x2+42=(8-x)2
解得x=3,
∴DE的长是3.
故答案为:3.

点评 此题主要考查了矩形的性质、中垂线的性质和勾股定理,熟练掌握矩形的对角线互相平分和中垂线的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网