题目内容

16.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则tanα的值为(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{3\sqrt{13}}{13}$D.$\frac{4\sqrt{13}}{13}$

分析 连结BC,根据圆周角定理由AB是半圆的直径得∠ACB=90°,在Rt△ABC中,根据勾股定理计算出BC=6,再根据垂径定理由OD⊥AC得到AE=CE=$\frac{1}{2}$AC=4,再根据锐角三角函数的定义即可得出结论.

解答 解:连结BC,如图,
∵AB是半圆的直径,
∴∠ACB=90°,
在Rt△ABC中,AC=8,AB=10,
∴BC=$\sqrt{{AB}^{2}-{AC}^{2}}$=6,
∵OD⊥AC,
∴AE=CE=$\frac{1}{2}$AC=4,
∴tanα=$\frac{BC}{CE}$=$\frac{6}{4}$=$\frac{3}{2}$.
故选A.

点评 本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网