题目内容

18.如图,已知A,B是反比例函数y=$\frac{k}{x}$(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,先沿射线OA的方向运动到点A,再从点A沿曲线AB运动到点B,最后沿射线BC方向运动到点C,整个运动过程中点P的运动速度保持不变,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N,设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为(  )
A.B.C.D.

分析 结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.

解答 解:设∠AOM=α,点P运动的速度为a,
当点P从点O运动到点A的过程中,S=(atcosα)•(atsinα)=a2•cosα•sinα•t2
由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;
当点P从A运动到B时,由反比例函数性质可知S=k,保持不变,
故本段图象应为与横轴平行的线段;
当点P从B运动到C过程中,四边形OMPN的长ON=OC不变,宽PN在减小,
故本段图象应该为一段下降的线段;
综上所述,则S关于t的函数图象大致为C,
故选C.

点评 本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P在O→A、A→B、B→C三段位置时三角形OMP的面积计算方式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网