题目内容

4.已知?ABCD中,AC是对角线,BE平分∠ABC交AC于点E,DF平分∠ADC交AC于点F,求证:AE=CF.

分析 先根据平行四边形的性质得出∠ABC=∠CDA,然后利用角平分线的知识证明∠BAE=∠DCF,从而根据三角形全等的判定定理即可作出证明.

解答 证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,∠ABC=∠CDA,
∵BE平分∠ABC,DF平分∠ADC,
∴∠ABE=∠CDF,
∵AB∥CD,
∴∠BAE=∠DCF
在△ABE和△CDF中,
$\left\{\begin{array}{l}{∠ABE=∠CDF}\\{AB=CD}\\{∠BAE=∠DCF}\end{array}\right.$,
∴△ABE≌△CDF(ASA),
∴AE=CF.

点评 本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两三角形全等所需要的条件,然后根据三角形全等的判定定理进行证明.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网