题目内容

3.解方程组:
(1)$\left\{\begin{array}{l}{x-2y=1}\\{2x+y=7}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{\frac{1}{2}x+y=2}\\{x+\frac{x-y}{3}=14}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{\frac{x+2}{2}+\frac{y-1}{2}=2}\\{\frac{x-1}{3}+\frac{2-y}{2}=1}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可;
(3)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x-2y=1①}\\{2x+y=7②}\end{array}\right.$,
①+②×2得:5x=15,
解得:x=3,
把x=3代入①得:3-2y=1,
解得:y=1,
则原方程的解为$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$;
(2)整理得:$\left\{\begin{array}{l}{x+2y=4①}\\{4x-y=42②}\end{array}\right.$,
①+②×2得:9x=88,即x=$\frac{88}{9}$,
把x=$\frac{88}{9}$代入①得:y=-$\frac{26}{9}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{88}{9}}\\{y=-\frac{26}{9}}\end{array}\right.$;
(3)方程组整理得:$\left\{\begin{array}{l}{x+y=3①}\\{2x-3y=2②}\end{array}\right.$,
①×3+②得:5x=11,即x=2.2,
把x=2.2代入①得:y=0.8,
则方程组的解为$\left\{\begin{array}{l}{x=2.2}\\{y=0.8}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网