题目内容
2.如图①,在正方形ABCD中,对角线AC、BD交于点O,动点P在线段BC上(不含点B),∠BPE=$\frac{1}{2}$∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)如图②,当点P与点C重合时,求证:△BOG≌△POE;
(2)通过观察、测量、猜想:$\frac{BF}{PE}$=$\frac{1}{2}$,并结合图①证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ACB=a,直接写出$\frac{BF}{PE}$的值,为tanα.(用含a的式子表示)
分析 (1)由四边形ABCD是正方形,P与C重合,易证得OB=OP,∠BOC=∠BOG=90°,由同角的余角相等,证得∠GBO=∠EPO,则可利用ASA证得:△BOG≌△POE;
(2)首先过P作PM∥AC交BG于M,交BO于N,易证得△BMN≌△PEN(ASA),△BPF≌△MPF(ASA),即可得BM=PE,BF=$\frac{1}{2}$BM.则可求得$\frac{BF}{PE}$的值;
(3)首先过P作PM∥AC交BG于点M,交BO于点N,由(2)同理可得:BF=$\frac{1}{2}$BM,∠MBN=∠EPN,继而可证得:△BMN∽△PEN,然后由相似三角形的对应边成比例,求得$\frac{BF}{PE}$.
解答 (1)证明:∵四边形ABCD是正方形,P与C重合,
∴OB=OP,∠BOC=∠BOG=90°,
∵PF⊥BG,∠PFB=90°,
∴∠GBO=90°-∠BGO,∠EPO=90°-∠BGO,
∴∠GBO=∠EPO,
在△BOG和△POE中,$\left\{\begin{array}{l}{∠GBO=∠EPO}\\{OB=OP}\\{∠BOG=∠COE}\end{array}\right.$,
∴△BOG≌△POE(ASA);
(2)解:猜想 $\frac{BF}{PE}$=$\frac{1}{2}$.
证明:如图2,过P作PM∥AC交BG于M,交BO于N,![]()
∴∠PNE=∠BOC=90°,∠BPN=∠OCB.
∵∠OBC=∠OCB=45°,
∴∠NBP=∠NPB.
∴NB=NP.
∵∠MBN=90°-∠BMN,∠NPE=90°-∠BMN,
∴∠MBN=∠NPE,
在△BMN和△PEN中,$\left\{\begin{array}{l}{∠MBN=∠NPE}\\{NB=NP}\\{∠MNB=∠PNE}\end{array}\right.$,
∴△BMN≌△PEN(ASA),
∴BM=PE.
∵∠BPE=$\frac{1}{2}$∠ACB,∠BPN=∠ACB,
∴∠BPF=∠MPF.
∵PF⊥BM,
∴∠BFP=∠MFP=90°.
在△BPF和△MPF中,$\left\{\begin{array}{l}{∠BPF=∠MPE}\\{PF=PF}\\{∠PFB=∠PFM}\end{array}\right.$,
∴△BPF≌△MPF(ASA).
∴BF=MF.
即BF=$\frac{1}{2}$BM.
∴BF=$\frac{1}{2}$PE.
即$\frac{BF}{PE}$=$\frac{1}{2}$;
故答案为$\frac{1}{2}$;
(3)解:如图3,
过P作PM∥AC交BG于点M,交BO于点N,
∴∠BPN=∠ACB=α,∠PNE=∠BOC=90°.
由(2)同理可得BF=$\frac{1}{2}$BM,∠MBN=∠EPN,
∴△BMN∽△PEN,
∴$\frac{BM}{PE}$=$\frac{BN}{PN}$.
在Rt△BNP中,tanα=$\frac{BN}{PN}$,
∴$\frac{BM}{PE}$=tanα.即$\frac{2BF}{PE}$=tanα.
∴$\frac{BF}{PE}$=tanα.
点评 此题考查了正方形的性质、菱形的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的定义等知识.此题综合性很强,难度较大,注意准确作出辅助线是解此题的关键,注意数形结合思想的应用.
| A. | 21 | B. | 22 | C. | 23 | D. | 24 |
| A. | a3•a2=a6 | B. | (a2)3=a5 | C. | (-3a2)3=-9a6 | D. | a2•(-2a)3=-8a5 |
| 包场计费:包场每场每小时50元,每人须另付入场费5元 |
| 人数计费:每人打球2小时20元,接着续打球每人每小时6元 |
| A. | 9 | B. | 8 | C. | 7 | D. | 6 |
| A. | 8元或10元 | B. | 12元 | C. | 8元 | D. | 10元 |