ÌâÄ¿ÄÚÈÝ
7£®ÒÑÖª¶þ´Îº¯ÊýͼÏóµÄ¶¥µã×ø±êΪC£¨-1£¬0£©£¬Ö±Ïßy=-x+mÓë¸Ã¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏó½»ÓÚA¡¢BÁ½µã£¬ÆäÖÐAµãµÄ×ø±êΪ£¨-3£¬4£©£¬BµãÔÚyÖáÉÏ£¬PΪֱÏßABÉϵÄÒ»¸ö¶¯µã£¨µãPÓëA¡¢B²»Öغϣ©£¬¹ýP×÷xÖáµÄ´¹ÏßÓëÕâ¸ö¶þ´Îº¯ÊýµÄͼÏó½»ÓÚµãE£¬DΪֱÏßABÓëÕâ¸ö¶þ´Îº¯ÊýͼÏóµÄ¶Ô³ÆÖáµÄ½»µã£®£¨1£©ÇómµÄÖµ¼°Õâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÔÚÏß¶ÎABÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃËıßÐÎDCEPÊÇÆ½ÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³ö´ËʱPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Å×ÎïÏßÉÏÊÇ·ñ´æÔÚµãE£¬Ê¹S¡÷EAB=3£¬Èô´æÔÚ£¬ÇëÖ±½Óд³ö´ËʱEµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾Ý¶¥µã×ø±ê£¨-1£¬0£©ÉèÅ×ÎïÏߵĽâÎöʽΪ£ºy=a£¨x+1£©2£¬°ÑµãA£¨-3£¬4£©·Ö±ð´úÈë¶þ´Îº¯ÊýºÍÒ»´Îº¯ÊýµÄ½âÎöʽÖпɵýáÂÛ£»
£¨2£©ÏÈÇóABµÄ½âÎöʽ£¬¸ù¾Ý½âÎöʽ±íʾ³öP¡¢EÁ½µãµÄ×ø±ê£ºÉèP£¨x£¬-x+1£©£¬E£¨x£¬x2+2x+1£©£¬ÓÉÆ½ÐÐËıßÐεÄÐÔÖÊ£ºCD=PEÁÐʽ¿ÉÇóµÃxµÄÖµ£¬¼ÆËãµãPµÄ×ø±ê£»
£¨3£©·ÖÁ½ÖÖÇé¿ö£ºÈçͼ2£¬µãEÔÚABµÄÏ·½Ê±£¬¸ù¾ÝÈý½ÇÐÎÃæ»ý=Ǧֱ¸ß¡Áˮƽ¿í£¬´ËʱµÄˮƽ¿íÊÇ3£¬Ç¦Ö±¸ßÊÇEF£¬¸ù¾Ý½âÎöʽ±íʾ£¬ÓÉÃæ»ý=2£¬´úÈë¿ÉÇóµÃ½áÂÛ£»
Èçͼ3£¬µãEÔÚABµÄÉÏ·½Ê±£¬
ÓÉͼ2¿ÉÖª£¬ÓëABƽÐÐÇÒÏòÉÏÆ½ÒÆ2¸öµ¥Î»µÄÖ±ÏßEFµÄ½âÎöʽΪ£ºy=-x+3£¬¸ÃÖ±ÏßÓëÅ×ÎïÏߵĽ»µã¼´ÊǵãE£¬Áз½³Ì×éÇó³ö¼´¿É£®
½â´ð ½â£º£¨1£©°ÑA£¨-3£¬4£©´úÈëy=-x+mµÃ£º3+m=4£¬
m=1£¬
ÉèÅ×ÎïÏߵĽâÎöʽΪ£ºy=a£¨x+1£©2£¬
°ÑA£¨-3£¬4£©´úÈëy=a£¨x+1£©2Öеãºa£¨-3+1£©2=4£¬
a=1£¬
¡àÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽΪ£ºy=£¨x+1£©2=x2+2x+1£»
£¨2£©Èçͼ1£¬µ±x=0ʱ£¬y=1£¬![]()
¡àB£¨0£¬1£©£¬
ÉèÖ±ÏßABµÄ½âÎöʽΪ£ºy=kx+b£¬
°ÑA£¨-3£¬4£©£¬B£¨0£¬1£©´úÈëµÃ£º$\left\{\begin{array}{l}{-3k+b=4}\\{b=1}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-1}\\{b=1}\end{array}\right.$£¬
¡àÖ±ÏßABµÄ½âÎöʽΪ£ºy=-x+1£¬
µ±x=-1ʱ£¬y=1+1=2£¬
¡àD£¨-1£¬2£©£¬
¡àCD=2£¬
ÉèP£¨x£¬-x+1£©£¬E£¨x£¬x2+2x+1£©£¬
¡ßËıßÐÎDCEPÊÇÆ½ÐÐËıßÐΣ¬
¡àCD=PE£¬CD¡ÎPE£¬
¡àPE=£¨-x+1£©-£¨x2+2x+1£©=-x2-3x=2£¬
x2+3x+2=0£¬![]()
£¨x+1£©£¨x+2£©=0£¬
x1=-1£¨Éᣩ£¬x2=-2£¬
µ±x=-2ʱ£¬y=2+1=3£¬
¡àP£¨-2£¬3£©£»
£¨3£©´æÔÚ£¬
¹ýE×÷EF¡ÎCD£¬½»ABÓÚF
ÉèF£¨x£¬-x+1£©£¬E£¨x£¬x2+2x+1£©£¬
¡ßS¡÷ABE=$\frac{1}{2}$¡Á3EF=3
¡àEF=2
Èçͼ2£¬µãEÔÚABµÄÏ·½Ê±£¬
EF=£¨-x+1£©-£¨x2+2x+1£©=-x2-3x=2£¬
x1=-1£¬x2=-2£¬![]()
µ±x=-1ʱ£¬y=0£¬
µ±x=-2ʱ£¬y=1£¬
´ËʱµãE£¨-1£¬0£©¡¢£¨-2£¬1£©£»
Èçͼ3£¬µãEÔÚABµÄÉÏ·½Ê±£¬
ÓÉͼ2¿ÉÖª£¬ÓëABƽÐÐÇÒÏòÉÏÆ½ÒÆ2¸öµ¥Î»µÄÖ±ÏßEFµÄ½âÎöʽΪ£ºy=-x+3£¬
Ôò$\left\{\begin{array}{l}{y=-x+3}\\{y={x}^{2}+2x+1}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{{x}_{1}=\frac{-3+\sqrt{17}}{2}}\\{{y}_{1}=\frac{9-\sqrt{17}}{2}}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=\frac{-3-\sqrt{17}}{2}}\\{{y}_{2}=\frac{9+\sqrt{17}}{2}}\end{array}\right.$£¬
¡àE£¨$\frac{-3+\sqrt{17}}{2}$£¬$\frac{9-\sqrt{17}}{2}$£©»ò£¨$\frac{-3-\sqrt{17}}{2}$£¬$\frac{9+\sqrt{17}}{2}$£©£»
×ÛÉÏËùÊö£¬µãEµÄ×ø±êΪ£º£¨-1£¬0£©»ò£¨-2£¬1£©»ò£¨$\frac{-3+\sqrt{17}}{2}$£¬$\frac{9-\sqrt{17}}{2}$£©»ò£¨$\frac{-3-\sqrt{17}}{2}$£¬$\frac{9+\sqrt{17}}{2}$£©£®
µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£ºÔÚÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý¹ØÏµÊ½Ê±£¬Òª¸ù¾ÝÌâÄ¿¸ø¶¨µÄÌõ¼þ£¬Ñ¡ÔñÇ¡µ±µÄ·½·¨Éè³ö¹ØÏµÊ½£¬´Ó¶ø´úÈëÊýÖµÇó½â£®Ò»°ãµØ£¬µ±ÒÑÖªÅ×ÎïÏßÉÏÈýµãʱ£¬³£Ñ¡ÔñÒ»°ãʽ£¬Óôý¶¨ÏµÊý·¨ÁÐÈýÔªÒ»´Î·½³Ì×éÀ´Çó½â£»µ±ÒÑÖªÅ×ÎïÏߵĶ¥µã»ò¶Ô³ÆÖáʱ£¬³£ÉèÆä½âÎöʽΪ¶¥µãʽÀ´Ç󣬱¾Ìâ¾ÍÊÇÉè¶¥µãʽÀ´Çó½âÎöʽ£»¶ÔÓÚÒÑÖªÈý½ÇÐÎÃæ»ýµÄÖµ£¬È·¶¨Å×ÎïÏßÉÏÒ»¶¯µã×ø±êʱ£¬³£ÀûÓÃÈ·¶¨Æ½ÐÐÏß½âÎöʽµÄ·½·¨£¬ÔÙÀûÓÃÁ½º¯ÊýµÄ½»µãÀ´½â¾öÎÊÌ⣮
| A£® | ÔÚ¡ÑAÄÚ | B£® | ÔÚ¡ÑAÉÏ | C£® | ÔÚ¡ÑAÍâ | D£® | ²»ÄÜÈ·¶¨ |
| A£® | £¨-2£¬1£© | B£® | £¨-2£¬-$\frac{3}{2}$£© | C£® | £¨-$\frac{3}{2}$£¬-9£© | D£® | £¨-2£¬-1£© |