题目内容
①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.
其中能够证明△DOF≌△EOF的条件的个数有
考点:全等三角形的判定,角平分线的性质
专题:
分析:根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.
解答:解:∵FD⊥AO于D,FE⊥BO于E,
∴∠ODF=∠OEF=90°,
①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;
②加上条件DF=EF可利用HL判定△DOF≌△EOF;
③加上条件DO=EO可利用HL判定△DOF≌△EOF;
④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;
因此其中能够证明△DOF≌△EOF的条件的个数有4个,
故答案为:4.
∴∠ODF=∠OEF=90°,
①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;
②加上条件DF=EF可利用HL判定△DOF≌△EOF;
③加上条件DO=EO可利用HL判定△DOF≌△EOF;
④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;
因此其中能够证明△DOF≌△EOF的条件的个数有4个,
故答案为:4.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关题目