题目内容
10.分析 根据BE=CF得:BC=EF,由SSS证明△ABC和△DEF(SSS),得∠F=∠ACB,可以得出结论AC∥DF.
解答 证明:∵BE=CF,
∴BE+EC=CF+EC,
即BC=EF,
在△ABC和△DEF中,
∵$\left\{\begin{array}{l}{AB=DE}\\{AC=DF}\\{BC=EF}\end{array}\right.$,
∴△ABC≌△DEF(SSS),
∴∠F=∠ACB,
∴AC∥DF.
点评 本题考查了全等三角形的性质和判定,属于常考题型;熟练掌握全等三角形的判定方法是关键,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,还要注意已知的边或角是否为所要证明的三角形的边或角,如果不是要加以证明,必要时添加适当辅助线构造三角形.
练习册系列答案
相关题目
1.
如图,在平面直角坐标系中,已知⊙O的半径为2,动直线AB与x轴交于点P(x,0),直线AB与x轴正方向夹角为45°,若直线AB与⊙O有公共点,则x的取值范围是( )
| A. | -2≤x≤2 | B. | -2$\sqrt{2}$<x<2$\sqrt{2}$ | C. | 0≤x≤2$\sqrt{2}$ | D. | -2$\sqrt{2}$≤x≤2$\sqrt{2}$ |