题目内容
6.在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P为和谐点,例如点(1,1),(-$\frac{1}{3}$,-$\frac{1}{3}$),(-$\sqrt{2}$,-$\sqrt{2}$),…都是和谐点,若二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个和谐点($\frac{3}{2}$,$\frac{3}{2}$),当0≤x≤m时,函数y=ax2+4x+c-$\frac{3}{4}$(a≠0)的最小值为-3,最大值为1,则m的取值范围是2≤m≤4.分析 根据和谐点的概念令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32-4ac=0,即4ac=9,方程的根为$\frac{-3}{2a}$=$\frac{3}{2}$,从而求得a=-1,c=-$\frac{9}{4}$,所以函数y=ax2+4x+c-$\frac{3}{4}$=-x2+4x-3,根据函数解析式求得顶点坐标与纵坐标的交点坐标,根据y的取值,即可确定x的取值范围.
解答 解:令ax2+4x+c=x,即ax2+3x+c=0,
由题意,△=32-4ac=0,即4ac=9,
又方程的根为$\frac{-3}{2a}$=$\frac{3}{2}$,
解得a=-1,c=-$\frac{9}{4}$.
故函数y=ax2+4x+c-$\frac{3}{4}$=-x2+4x-3,
如图,该函数图象顶点为(2,1),与y轴交点为(0,-3),由对称性,该函数图象也经过点(4,-3). ![]()
由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m时,函数y=-x2+4x-3的最小值为-3,最大值为1,
∴2≤m≤4,
故答案为:2≤m≤4.
点评 本题是二次函数的综合题,考查了二次函数图象上点的坐标特征,二次函数的性质以及根的判别式等知识,利用分类讨论以及数形结合得出是解题关键.
练习册系列答案
相关题目
14.
如图,已知正方形铁丝框ABCD边长为10,现使其变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形的面积为( )
| A. | 50 | B. | 100 | C. | 150 | D. | 200 |