ÌâÄ¿ÄÚÈÝ
20£®£¨1£©Ö±½Óд³ö´ð°¸£ºAB=11.3£¨¾«È·µ½0.1£©£¬¡ÏOAB45¶È£»
£¨2£©ÊÔÇ󶯵ãEµÄ×ø±ê£¬²¢¼ÆËãDEµÄ³¤¶È£¨Óú¬tµÄ´úÊýʽ±íʾ£©£»
£¨3£©µ±t=2ʱ£¬ÇóµãFµÄ×ø±ê£¬²¢Åжϣºµ±t=2ʱ£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚÕâÑùµÄµãM£¬Ê¹µÃM¡¢A¡¢FΪ¶¥µãµÄÈý½ÇÐÎΪµÈÑüÈý½ÇÐΣ»Èô´æÔÚ£¬ÇëÇó³öMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©·Ö±ðÁîy=-x+8ÖÐx=0¡¢y=0Çó³öÓëÖ®¶ÔÓ¦µÄy¡¢xÖµ£¬Óɴ˼´¿ÉµÃ³öµãA¡¢BµÄ×ø±ê£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼´¿ÉµÃ³öABµÄ³¤¶È£¬ÔÙÀûÓÃÌØÊâ½ÇµÄÕýÇÐÖµ¼´¿ÉµÃ³ö¡ÏOABµÄ¶ÈÊý£»
£¨2£©¸ù¾ÝOA¡¢ABÖ®¼äµÄ¹ØÏµ½áºÏµãDµÄÔ˶¯Ëٶȼ´¿ÉÕÒ³öµãDµÄºá×ø±ê£¬Óɴ˼´¿ÉÕÒ³öµãD¡¢EµÄ×ø±ê£¬ÔÙÁªÁ¢Ö±Ïßl1¡¢l2µÄ½âÎöʽ³É·½³Ì×飬½â·½³Ì×é¼´¿ÉµÃ³ö½»µãCµÄ×ø±ê£¬Óɴ˼´¿ÉµÃ³ötµÄȡֵ·¶Î§£¬ÔÙ½áºÏµãD¡¢EµÄ×ø±ê¼´¿ÉÕÒ³öDEµÄ³¤¶È£»
£¨3£©½«t=2´úÈëµãD¡¢EµÄ×ø±êÖУ¬ÀûÓõÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊÕÒ³öµãFµÄ×ø±ê£¬¼ÙÉè´æÔÚ£¬ÉèµãMµÄ×ø±êΪ£¨m£¬0£©£¬½áºÏµãA¡¢FµÄ×ø±ê¼´¿ÉµÃ³öAM¡¢AF¡¢FMµÄ³¤¶È£¬¸ù¾ÝµÈÑüÈý½ÇÐεÄÐÔÖÊ·ÖFM=FA¡¢AF=AMºÍMA=MFÈýÖÖÇé¿ö¿¼ÂÇ£¬ÓÉÁ½±ßÏàµÈ¼´¿ÉµÃ³ö¹ØÓÚmµÄ·½³Ì£¬½â·½³Ì¼´¿ÉÇó³ömµÄÖµ£¬½«Æä´úÈëµãMµÄ×ø±êÖм´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©Áîy=-x+8ÖÐx=0£¬Ôòy=8£¬
¡àB£¨0£¬8£©£»
Áîy=-x+8ÖÐy=0£¬Ôòx=8£¬
¡àA£¨8£¬0£©£®
¡àAB=$\sqrt{£¨0-8£©^{2}+£¨8-0£©^{2}}$=8$\sqrt{2}$¡Ö11.3£¬tan¡ÏOAB=$\frac{OB}{OA}$=1£¬
¡à¡ÏOAB=45¡ã£®
¹Ê´ð°¸Îª£º11.3£»45£®
£¨2£©¡ß$\frac{OA}{AB}=\frac{8}{8\sqrt{2}}$=$\frac{\sqrt{2}}{2}$£¬ÇÒµãD´ÓB³ö·¢£¬ÒÔÿÃë$\sqrt{2}$¸öµ¥Î»³¤¶ÈÑØBC·½ÏòÔ˶¯£¬
¡àµãDµÄºá×ø±êΪt£¬
¡àD£¨t£¬8-t£©£¬E£¨t£¬t£©£®
ÁªÁ¢Ö±Ïßl1¡¢l2µÄ½âÎöʽ£¬
µÃ£º$\left\{\begin{array}{l}{y=-x+8}\\{y=x}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$£¬
¡àC£¨4£¬4£©£¬
¡à0¡Üt¡Ü4£®
¡àDE=8-t-t=8-2t£¨0¡Üt¡Ü4£©£®
£¨3£©µ±t=2ʱ£¬D£¨2£¬6£©£¬E£¨2£¬2£©£¬DE=4£¬
¡ß¡÷DEFΪÒÔDEΪб±ßÏò×ó²àµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àF£¨2-$\frac{4}{2}$£¬$\frac{6+2}{2}$£©£¬¼´£¨0£¬4£©£®
¼ÙÉè´æÔÚ£¬ÉèµãMµÄ×ø±êΪ£¨m£¬0£©£¬
¡ßA£¨8£¬0£©£¬F£¨0£¬4£©£¬
¡àAF=$\sqrt{£¨8-0£©^{2}+£¨0-4£©^{2}}$=4$\sqrt{5}$£¬AM=|m-8|£¬FM=$\sqrt{£¨0-m£©^{2}+£¨4-0£©^{2}}$=$\sqrt{{m}^{2}+16}$£®![]()
¡÷MAFΪµÈÑüÈý½ÇÐηÖÈýÖÖÇé¿ö£¨ÈçͼËùʾ£©£º
¢Ùµ±FM=FAʱ£¬ÓÐ$\sqrt{{m}^{2}+16}$=4$\sqrt{5}$£¬
½âµÃ£ºm1=-8£¬m2=8£¨ÉáÈ¥£©£¬
´ËʱµãMµÄ×ø±êΪ£¨-8£¬0£©£»
¢Úµ±AF=AMʱ£¬ÓÐ4$\sqrt{5}$=|m-8|£¬
½âµÃ£ºm3=8+4$\sqrt{5}$£¬m4=8-4$\sqrt{5}$£¬
´ËʱµãMµÄ×ø±êΪ£¨8+4$\sqrt{5}$£¬0£©»ò£¨8-4$\sqrt{5}$£¬0£©£»
¢Ûµ±MA=MFʱ£¬ÓÐ|m-8|=$\sqrt{{m}^{2}+16}$£¬
½âµÃ£ºm5=3£¬
´ËʱµãMµÄ×ø±êΪ£¨3£¬0£©£®
×ÛÉÏËùÊö£ºµ±t=2ʱ£¬ÔÚxÖáÉÏ´æÔÚÕâÑùµÄµãM£¬Ê¹µÃM¡¢A¡¢FΪ¶¥µãµÄÈý½ÇÐÎΪµÈÑüÈý½ÇÐΣ¬µãMµÄ×ø±êΪ£¨-8£¬0£©¡¢£¨8+4$\sqrt{5}$£¬0£©¡¢£¨8-4$\sqrt{5}$£¬0£©»ò£¨3£¬0£©£®
µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢ÌØÊâ½ÇµÄÈý½Çº¯ÊýÖµ¡¢µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊÒÔ¼°Á½µã¼äµÄ¾àÀ빫ʽ£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©¸ù¾ÝÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷Çó³öµãA¡¢BµÄ×ø±ê£»£¨2£©Çó³öµãD¡¢EµÄ×ø±ê£»£¨3£©·ÖFM=FA¡¢AF=AMºÍMA=MFÈýÖÖÇé¿ö¿¼ÂÇ£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬¸ù¾ÝµÈÑüÈý½ÇÐεÄÐÔÖÊÕÒ³ö·½³ÌÊǹؼü£®
| A£® | 4 | B£® | 5 | C£® | 6 | D£® | 7 |
| A£® | x£¾3 | B£® | x=3 | C£® | x£¼3 | D£® | x¡Ù3 |
| A£® | 3»ò4 | B£® | $\frac{5}{2}$»ò$\frac{5}{3}$ | C£® | $\frac{5}{2}$»ò$\frac{3}{5}$ | D£® | $\frac{2}{5}$»ò$\frac{5}{3}$ |