题目内容

10.如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,点D的对应点为D′,若D′落在∠ABC的平分线上时,DE的长为(  )
A.3或4B.$\frac{5}{2}$或$\frac{5}{3}$C.$\frac{5}{2}$或$\frac{3}{5}$D.$\frac{2}{5}$或$\frac{5}{3}$

分析 连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.

解答 解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P

∵点D的对应点D′落在∠ABC的角平分线上,
∴MD′=PD′,
设MD′=x,则PD′=BM=x,
∴AM=AB-BM=7-x,
又折叠图形可得AD=AD′=5,
∴x2+(7-x)2=25,解得x=3或4,
即MD′=3或4.
在Rt△END′中,设ED′=a,
①当MD′=3时,AM=7-3=4,D′N=5-3=2,EN=4-a,
∴a2=22+(4-a)2
解得a=$\frac{5}{2}$,即DE=$\frac{5}{2}$,
②当MD′=4时,AM=7-4=3,D′N=5-4=1,EN=3-a,
∴a2=12+(3-a)2
解得a=$\frac{5}{3}$,即DE=$\frac{5}{3}$.
故选B.

点评 本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网